-
Notifications
You must be signed in to change notification settings - Fork 1
/
tellurify.py
255 lines (194 loc) · 8.3 KB
/
tellurify.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
# tellurify.py -i 6ac9.pdb -o 6ac9_TePhe.pdb --type tephe --exclude_residues 2 5 --ringflip_residues 3 5
# Note: The TePhe ring plane is aligned with the existing Phe ring plane using a brute force method. This can be substantially improved (see notebook).
import sys
import copy
import math
import argparse
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
from mpl_toolkits import mplot3d
from Bio.PDB import *
def coordsOfAtomFromResidue(atomName, resi):
return [a for a in resi.get_atoms() if a.get_name() == atomName][0].get_coord()
def quatConj(q):
# Compute the conjugate of quaternion q
return [q[0], -1*q[1], -1*q[2], -1*q[3]]
def quatMult(q1, q2):
w1, x1, y1, z1 = q1
w2, x2, y2, z2 = q2
w = w1 * w2 - x1 * x2 - y1 * y2 - z1 * z2
x = w1 * x2 + x1 * w2 + y1 * z2 - z1 * y2
y = w1 * y2 + y1 * w2 + z1 * x2 - x1 * z2
z = w1 * z2 + z1 * w2 + x1 * y2 - y1 * x2
return w, x, y, z
def quatToRotateAontoB(a,b):
theta = np.arccos(np.dot(a,b))
axis = normalize(np.cross(a, b))
s = np.sin(theta/2)
q = [np.cos(theta/2), axis[0]*s, axis[1]*s, axis[2]*s]
q = q / np.linalg.norm(q)
return q
def transformVectorByQuaternion(v, q):
# Transform a 3d vector by quaternion q, and return a 3D vector
vq = [0, v[0], v[1], v[2]]
transformed = quatMult(quatMult(q, vq), quatConj(q))
return [transformed[1], transformed[2], transformed[3]]
def normalize(v):
norm = np.linalg.norm(v)
return v / norm
def bruteForceAlignRingOrientation(tephe0, phe, offset=0):
# Get plane normals by crossproduct of two vectors in each ring
pGD1 = normalize(np.subtract(phe['CD1'], phe['CG']))
pGD2 = normalize(np.subtract(phe['CD2'], phe['CG']))
tGD = normalize(np.subtract(tephe0['CD'], tephe0['CG']))
tGTe = normalize(np.subtract(tephe0['Te'], tephe0['CG']))
tBG = normalize(np.subtract(tephe0['CB'],tephe0['CG']))
tGZ = normalize(np.subtract(tephe0['CZ'], tephe0['CG']))
pGZ = normalize(np.subtract(phe['CZ'], phe['CG']))
phe_norm = normalize(np.cross(pGD1, pGD2))
tephe_norm = normalize(np.cross(tGD, tGTe))
ring_delta = np.arccos(np.dot(tephe_norm, phe_norm))
thetas = []
deltas = []
tephes = []
for theta in np.linspace(0, 360, num=3600):
tephe = copy.deepcopy(tephe0)
# Generate the rotation
theta = theta*np.pi/180
offset = offset*np.pi/180
axis = normalize(pGZ)
s = np.sin(theta/2)
q = [np.cos(theta/2), axis[0]*s, axis[1]*s, axis[2]*s]
q = q / np.linalg.norm(q)
# Apply the quaternion rotation to the tephe points
for key,value in tephe.items():
tephe[key] = transformVectorByQuaternion(value, q)
## MEASURE THE RING ANGLE AGAIN
pGD1 = normalize(np.subtract(phe['CD1'], phe['CG']))
pGD2 = normalize(np.subtract(phe['CD2'], phe['CG']))
tGD = normalize(np.subtract(tephe['CD'], tephe['CG']))
tGTe = normalize(np.subtract(tephe['Te'], tephe['CG']))
tBG = normalize(np.subtract(tephe['CG'],tephe['CB']))
phe_norm = normalize(np.cross(pGD1, pGD2))
tephe_norm = normalize(np.cross(tGD, tGTe))
ring_delta = np.arccos(np.dot(tephe_norm, phe_norm))
thetas.append(theta) # input values (how much the ring was rotated)
deltas.append(ring_delta) # orientation difference between rings
tephes.append(tephe) # the actual coordinates
deltas = np.asarray(deltas)
idx = (np.abs(deltas - offset)).argmin()
return tephes[idx], deltas[idx]
def main(args):
# if args.exclude_residues == None:
# args.exclude_residues = []
# if args.ringflip_residues == None:
# Import data from the PDB
parser = PDBParser()
structure = parser.get_structure('target', args.input)
if args.type == 'temet':
M = [r for r in structure[0]['A'] if r.get_resname() == "MET"]
print("Loaded PDB and found %d methionines." % len(M))
for m in M:
if (m.get_id()[1]) in args.exclude_residues:
continue
m.resname = 'TMT'
# Remove the PHE atoms after CA from the PDB file. Also set the position of CB.
toDelete = []
tellurium = None
toDelete = []
for atom in m.get_atoms():
if atom.get_name() == 'SD':
toDelete.append(atom.get_id())
tellurium = Atom.Atom('TE', atom.get_coord(), atom.get_bfactor(), atom.get_occupancy(), atom.get_altloc(), 'Te', 'TE', 'TE')
for i in toDelete:
m.detach_child(i)
m.add(tellurium)
print("Substitution done, writing TeMet coordinates.")
elif args.type == 'tephe':
F = [r for r in structure[0]['A'] if r.get_resname() == "PHE"]
print("Loaded PDB and found %d phenylalanines." % len(F))
# Get the TePhe rigid body
tephe_structure = parser.get_structure('tephe', 'reference/tephe_rectified.pdb')
tephe_resi = list(tephe_structure[0].get_residues())[0]
# Make a dictionary with all the necessary TePhe atoms (ring plus beta carbon)
tephe0 = {
'CB' : coordsOfAtomFromResidue('CB',tephe_resi),
'CG' : coordsOfAtomFromResidue('CG',tephe_resi),
'CD' : coordsOfAtomFromResidue('CD',tephe_resi),
'CE' : coordsOfAtomFromResidue('CE',tephe_resi),
'CZ' : coordsOfAtomFromResidue('CZ',tephe_resi),
'Te' : coordsOfAtomFromResidue('Te',tephe_resi)
}
# Iterate through the phenylalanines
for i, f in enumerate(F):
if f.get_id()[1] in args.exclude_residues:
continue
tephe = copy.deepcopy(tephe0)
# Get the PHE atomic coordinates needed to position the new TEPHE ring.
phe = {
'CA' : coordsOfAtomFromResidue('CA',f),
'CB' : coordsOfAtomFromResidue('CB',f),
'CG' : coordsOfAtomFromResidue('CG',f),
'CD1' : coordsOfAtomFromResidue('CD1',f),
'CD2' : coordsOfAtomFromResidue('CD2',f),
'CE1' : coordsOfAtomFromResidue('CE1',f),
'CE2' : coordsOfAtomFromResidue('CE2',f),
'CZ' : coordsOfAtomFromResidue('CZ',f)
}
# STEP 1: ALIGN THE STEM VECTORS
# Find the stem vectors between beta and gamma carbons
tBG = normalize(np.subtract(tephe['CG'],tephe['CB']))
pBG = normalize(np.subtract(phe['CG'],phe['CB']))
# Calculate the quaternion rotation that makes tBG parallel to pBG
q = quatToRotateAontoB(tBG, pBG)
# Apply the quaternion rotation to the tephe points
for key,value in tephe.items():
tephe[key] = transformVectorByQuaternion(value, q)
# STEP 2: ALIGN THE RING PLANES
# Using a brute force approach. It is unclear why the principled approach wasn't working.
offset = 0
if f.get_id()[1] in args.ringflip_residues or args.ringflip_all:
offset = 180
tephe, ring_delta = bruteForceAlignRingOrientation(tephe, phe, offset)
print("Ring Delta for %d: %0.2f" % (i,ring_delta*(180/np.pi)))
# Translate the ring so that tCB aligns with pCB
translation = np.subtract(phe['CB'],tephe['CB'])
for key,value in tephe.items():
tephe[key] = np.add(value, translation)
# Construct the TePhe residue (N, CA, C, O, CB, CG, CD, CE, CZ, Te)
f.resname = 'TPE'
# Remove the PHE atoms after CA from the PDB file. Also set the position of CB.
toDelete = []
for atom in f.get_atoms():
if atom.get_name() in ['CD1', 'CD2', 'CE1', 'CE2', 'CZ']:
toDelete.append(atom.get_id())
elif atom.get_name() == 'CB':
atom.set_coord(tephe['CB'])
elif atom.get_name() == 'CG':
atom.set_coord(tephe['CG'])
for i in toDelete:
f.detach_child(i)
# name, coord, bf, occ, altloc, fullname, serial, element
cd = Atom.Atom('CD', tephe['CD'], 0, 1, ' ', 'CD', 'C', 'C')
ce = Atom.Atom('CE', tephe['CE'], 0, 1, ' ', 'CE', 'C', 'C')
cz = Atom.Atom('CZ', tephe['CZ'], 0, 1, ' ', 'CZ', 'C', 'C')
te = Atom.Atom('Te', tephe['Te'], 0, 1, ' ', 'Te', 'C', 'TE')
f.add(cd)
f.add(ce)
f.add(cz)
f.add(te)
print("Substitution done, writing TePhe coordinates.")
io = PDBIO()
io.set_structure(structure)
io.save(args.output)
print("Done!")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('-i', '--input', help="input PDB file", type=str, required=True)
parser.add_argument('-o','--output', help="output path", type=str, required=True)
parser.add_argument('--type', help="type (tephe or temet)", type=str, required=True)
parser.add_argument('--ringflip_all', help="ringflip all residues", action='store_true')
parser.add_argument('--exclude_residues', help="indexes of residues to exclude (separate with spaces)", nargs='+', type=int, required=False, default=[])
parser.add_argument('--ringflip_residues', help="indexes of residues to ringflip (separate with spaces)", nargs='+', type=int, required=False, default=[])
sys.exit(main(parser.parse_args()))