-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexamples.py
106 lines (75 loc) · 3.51 KB
/
examples.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import jax
import numpy as np
import autograd
x = autograd.Variable(2)
y = autograd.Variable(4)
mul_operation = autograd.multiply(x, y)
print("autograd forward result:", mul_operation.forward())
# output: Forward result: 8
print("autograd backward result with respect to x:", mul_operation.compute_gradients(with_respect=x))
# output: Backward result with respect to x: 4.0
print("autograd backward result with respect to y:", mul_operation.compute_gradients(with_respect=y))
# output: Backward result with respect to y: 2.0
# JAX implementation
def multiply(x, y):
return jax.numpy.multiply(x, y)
print("JAX forward result:", multiply(2., 4.))
# output: JAX Forward result: 8.0
# argnums is the same as with_respect in autograd,
# it means which parameter you want to differetiate with respect to it.
# here we differentiate with respect to X by setting argnums=0
# which means the first function argument `X`.
print("JAX backward result with respect to x:", jax.grad(multiply, argnums=0)(2., 4.))
# output: JAX backward result with respect to x: 4.0
# argnums = 1 means with respect to `y``.
print("JAX backward result with respect to y:", jax.grad(multiply, argnums=1)(2., 4.))
# output: JAX backward result with respect to y: 2.0
# If you have a multiple operations like the following
# Variables
x = autograd.Variable(2.)
y = autograd.Variable(3.)
z = autograd.Variable(10.)
# Operations
add_op = autograd.add(x, y)
mul_op = autograd.multiply(add_op, z)
pow_op = autograd.power(mul_op, 2)
print("autograd forward result:", pow_op.forward())
# output: Forward result: 2500.0
# To get the gradients we will call `compute_gradients` from the last operation `pow_op`
print("autograd backward result with respect to x:", pow_op.compute_gradients(with_respect=x))
# output: Backward result with respect to x: 1000.0
print("autograd backward result with respect to y:", pow_op.compute_gradients(with_respect=y))
# output: Backward result with respect to y: 1000.0
print("autograd backward result with respect to z:", pow_op.compute_gradients(with_respect=z))
# output: Backward result with respect to z: 500.0
# In JAX
def fun(x, y, z):
out = jax.numpy.add(x, y)
out = jax.numpy.multiply(out, z)
out = jax.numpy.power(out, 2)
return out
print("JAX Forward result:", fun(2., 3., 10.))
# output: JAX Forward result: 2500.0
# To get the gradients we will call `jax.grad`
print("JAX Backward result with respect to x:", jax.grad(fun, argnums=0)(2., 3., 10.))
# output: JAX Backward result with respect to x: 1000.0
print("JAX Backward result with respect to y:", jax.grad(fun, argnums=1)(2., 3., 10.))
# output: JAX Backward result with respect to y: 1000.0
print("JAX Backward result with respect to z:", jax.grad(fun, argnums=2)(2., 3., 10.))
# output: JAX Backward result with respect to z: 500.0
x = autograd.Variable(0.2)
# sigmoid operation
sigmoid_op = autograd.sigmoid(x)
print("Forward result: ", sigmoid_op.forward())
# output: Forward result: 0.549833997312478
print("Backward result with respect to x:", sigmoid_op.compute_gradients(with_respect=x))
# output: Backward result with respect to x: 0.24751657271185995
# In JAX
def sigmoid(x):
exp_result = jax.numpy.exp(-x)
return jax.numpy.divide(1, jax.numpy.add(1, exp_result))
print("JAX forward result:", sigmoid(0.2))
# output: Backward result with respect to x: 0.24751657271185995
# argnums = 0 means with respect to `x``.
print("JAX backward result with respect to x:", jax.grad(sigmoid, argnums=0)(0.2))
# output: JAX backward result with respect to x: 0.24751654