-
Notifications
You must be signed in to change notification settings - Fork 601
/
spec.go
1678 lines (1414 loc) · 48 KB
/
spec.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright (c) HashiCorp, Inc.
// SPDX-License-Identifier: MPL-2.0
package hcldec
import (
"bytes"
"fmt"
"sort"
"github.com/hashicorp/hcl/v2"
"github.com/hashicorp/hcl/v2/ext/customdecode"
"github.com/zclconf/go-cty/cty"
"github.com/zclconf/go-cty/cty/convert"
"github.com/zclconf/go-cty/cty/function"
)
// A Spec is a description of how to decode a hcl.Body to a cty.Value.
//
// The various other types in this package whose names end in "Spec" are
// the spec implementations. The most common top-level spec is ObjectSpec,
// which decodes body content into a cty.Value of an object type.
type Spec interface {
// Perform the decode operation on the given body, in the context of
// the given block (which might be null), using the given eval context.
//
// "block" is provided only by the nested calls performed by the spec
// types that work on block bodies.
decode(content *hcl.BodyContent, blockLabels []blockLabel, ctx *hcl.EvalContext) (cty.Value, hcl.Diagnostics)
// Return the cty.Type that should be returned when decoding a body with
// this spec.
impliedType() cty.Type
// Call the given callback once for each of the nested specs that would
// get decoded with the same body and block as the receiver. This should
// not descend into the nested specs used when decoding blocks.
visitSameBodyChildren(cb visitFunc)
// Determine the source range of the value that would be returned for the
// spec in the given content, in the context of the given block
// (which might be null). If the corresponding item is missing, return
// a place where it might be inserted.
sourceRange(content *hcl.BodyContent, blockLabels []blockLabel) hcl.Range
}
type visitFunc func(spec Spec)
// An ObjectSpec is a Spec that produces a cty.Value of an object type whose
// attributes correspond to the keys of the spec map.
type ObjectSpec map[string]Spec
// attrSpec is implemented by specs that require attributes from the body.
type attrSpec interface {
attrSchemata() []hcl.AttributeSchema
}
// blockSpec is implemented by specs that require blocks from the body.
type blockSpec interface {
blockHeaderSchemata() []hcl.BlockHeaderSchema
nestedSpec() Spec
}
// specNeedingVariables is implemented by specs that can use variables
// from the EvalContext, to declare which variables they need.
type specNeedingVariables interface {
variablesNeeded(content *hcl.BodyContent) []hcl.Traversal
}
// UnknownBody can be optionally implemented by an hcl.Body instance which may
// be entirely unknown.
type UnknownBody interface {
Unknown() bool
}
func (s ObjectSpec) visitSameBodyChildren(cb visitFunc) {
for _, c := range s {
cb(c)
}
}
func (s ObjectSpec) decode(content *hcl.BodyContent, blockLabels []blockLabel, ctx *hcl.EvalContext) (cty.Value, hcl.Diagnostics) {
vals := make(map[string]cty.Value, len(s))
var diags hcl.Diagnostics
for k, spec := range s {
var kd hcl.Diagnostics
vals[k], kd = spec.decode(content, blockLabels, ctx)
diags = append(diags, kd...)
}
return cty.ObjectVal(vals), diags
}
func (s ObjectSpec) impliedType() cty.Type {
if len(s) == 0 {
return cty.EmptyObject
}
attrTypes := make(map[string]cty.Type)
for k, childSpec := range s {
attrTypes[k] = childSpec.impliedType()
}
return cty.Object(attrTypes)
}
func (s ObjectSpec) sourceRange(content *hcl.BodyContent, blockLabels []blockLabel) hcl.Range {
// This is not great, but the best we can do. In practice, it's rather
// strange to ask for the source range of an entire top-level body, since
// that's already readily available to the caller.
return content.MissingItemRange
}
// A TupleSpec is a Spec that produces a cty.Value of a tuple type whose
// elements correspond to the elements of the spec slice.
type TupleSpec []Spec
func (s TupleSpec) visitSameBodyChildren(cb visitFunc) {
for _, c := range s {
cb(c)
}
}
func (s TupleSpec) decode(content *hcl.BodyContent, blockLabels []blockLabel, ctx *hcl.EvalContext) (cty.Value, hcl.Diagnostics) {
vals := make([]cty.Value, len(s))
var diags hcl.Diagnostics
for i, spec := range s {
var ed hcl.Diagnostics
vals[i], ed = spec.decode(content, blockLabels, ctx)
diags = append(diags, ed...)
}
return cty.TupleVal(vals), diags
}
func (s TupleSpec) impliedType() cty.Type {
if len(s) == 0 {
return cty.EmptyTuple
}
attrTypes := make([]cty.Type, len(s))
for i, childSpec := range s {
attrTypes[i] = childSpec.impliedType()
}
return cty.Tuple(attrTypes)
}
func (s TupleSpec) sourceRange(content *hcl.BodyContent, blockLabels []blockLabel) hcl.Range {
// This is not great, but the best we can do. In practice, it's rather
// strange to ask for the source range of an entire top-level body, since
// that's already readily available to the caller.
return content.MissingItemRange
}
// An AttrSpec is a Spec that evaluates a particular attribute expression in
// the body and returns its resulting value converted to the requested type,
// or produces a diagnostic if the type is incorrect.
type AttrSpec struct {
Name string
Type cty.Type
Required bool
}
func (s *AttrSpec) visitSameBodyChildren(cb visitFunc) {
// leaf node
}
// specNeedingVariables implementation
func (s *AttrSpec) variablesNeeded(content *hcl.BodyContent) []hcl.Traversal {
attr, exists := content.Attributes[s.Name]
if !exists {
return nil
}
return attr.Expr.Variables()
}
// attrSpec implementation
func (s *AttrSpec) attrSchemata() []hcl.AttributeSchema {
return []hcl.AttributeSchema{
{
Name: s.Name,
Required: s.Required,
},
}
}
func (s *AttrSpec) sourceRange(content *hcl.BodyContent, blockLabels []blockLabel) hcl.Range {
attr, exists := content.Attributes[s.Name]
if !exists {
return content.MissingItemRange
}
return attr.Expr.Range()
}
func (s *AttrSpec) decode(content *hcl.BodyContent, blockLabels []blockLabel, ctx *hcl.EvalContext) (cty.Value, hcl.Diagnostics) {
attr, exists := content.Attributes[s.Name]
if !exists {
// We don't need to check required and emit a diagnostic here, because
// that would already have happened when building "content".
return cty.NullVal(s.Type), nil
}
if decodeFn := customdecode.CustomExpressionDecoderForType(s.Type); decodeFn != nil {
v, diags := decodeFn(attr.Expr, ctx)
if v == cty.NilVal {
v = cty.UnknownVal(s.Type)
}
return v, diags
}
val, diags := attr.Expr.Value(ctx)
convVal, err := convert.Convert(val, s.Type)
if err != nil {
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: "Incorrect attribute value type",
Detail: fmt.Sprintf(
"Inappropriate value for attribute %q: %s.",
s.Name, err.Error(),
),
Subject: attr.Expr.Range().Ptr(),
Context: hcl.RangeBetween(attr.NameRange, attr.Expr.Range()).Ptr(),
Expression: attr.Expr,
EvalContext: ctx,
})
// We'll return an unknown value of the _correct_ type so that the
// incomplete result can still be used for some analysis use-cases.
val = cty.UnknownVal(s.Type)
} else {
val = convVal
}
return val, diags
}
func (s *AttrSpec) impliedType() cty.Type {
return s.Type
}
// A LiteralSpec is a Spec that produces the given literal value, ignoring
// the given body.
type LiteralSpec struct {
Value cty.Value
}
func (s *LiteralSpec) visitSameBodyChildren(cb visitFunc) {
// leaf node
}
func (s *LiteralSpec) decode(content *hcl.BodyContent, blockLabels []blockLabel, ctx *hcl.EvalContext) (cty.Value, hcl.Diagnostics) {
return s.Value, nil
}
func (s *LiteralSpec) impliedType() cty.Type {
return s.Value.Type()
}
func (s *LiteralSpec) sourceRange(content *hcl.BodyContent, blockLabels []blockLabel) hcl.Range {
// No sensible range to return for a literal, so the caller had better
// ensure it doesn't cause any diagnostics.
return hcl.Range{
Filename: "<unknown>",
}
}
// An ExprSpec is a Spec that evaluates the given expression, ignoring the
// given body.
type ExprSpec struct {
Expr hcl.Expression
}
func (s *ExprSpec) visitSameBodyChildren(cb visitFunc) {
// leaf node
}
// specNeedingVariables implementation
func (s *ExprSpec) variablesNeeded(content *hcl.BodyContent) []hcl.Traversal {
return s.Expr.Variables()
}
func (s *ExprSpec) decode(content *hcl.BodyContent, blockLabels []blockLabel, ctx *hcl.EvalContext) (cty.Value, hcl.Diagnostics) {
return s.Expr.Value(ctx)
}
func (s *ExprSpec) impliedType() cty.Type {
// We can't know the type of our expression until we evaluate it
return cty.DynamicPseudoType
}
func (s *ExprSpec) sourceRange(content *hcl.BodyContent, blockLabels []blockLabel) hcl.Range {
return s.Expr.Range()
}
// A BlockSpec is a Spec that produces a cty.Value by decoding the contents
// of a single nested block of a given type, using a nested spec.
//
// If the Required flag is not set, the nested block may be omitted, in which
// case a null value is produced. If it _is_ set, an error diagnostic is
// produced if there are no nested blocks of the given type.
type BlockSpec struct {
TypeName string
Nested Spec
Required bool
}
func (s *BlockSpec) visitSameBodyChildren(cb visitFunc) {
// leaf node ("Nested" does not use the same body)
}
// blockSpec implementation
func (s *BlockSpec) blockHeaderSchemata() []hcl.BlockHeaderSchema {
return []hcl.BlockHeaderSchema{
{
Type: s.TypeName,
LabelNames: findLabelSpecs(s.Nested),
},
}
}
// blockSpec implementation
func (s *BlockSpec) nestedSpec() Spec {
return s.Nested
}
// specNeedingVariables implementation
func (s *BlockSpec) variablesNeeded(content *hcl.BodyContent) []hcl.Traversal {
var childBlock *hcl.Block
for _, candidate := range content.Blocks {
if candidate.Type != s.TypeName {
continue
}
childBlock = candidate
break
}
if childBlock == nil {
return nil
}
return Variables(childBlock.Body, s.Nested)
}
func (s *BlockSpec) decode(content *hcl.BodyContent, blockLabels []blockLabel, ctx *hcl.EvalContext) (cty.Value, hcl.Diagnostics) {
var diags hcl.Diagnostics
var childBlock *hcl.Block
for _, candidate := range content.Blocks {
if candidate.Type != s.TypeName {
continue
}
if childBlock != nil {
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: fmt.Sprintf("Duplicate %s block", s.TypeName),
Detail: fmt.Sprintf(
"Only one block of type %q is allowed. Previous definition was at %s.",
s.TypeName, childBlock.DefRange.String(),
),
Subject: &candidate.DefRange,
})
break
}
childBlock = candidate
}
if childBlock == nil {
if s.Required {
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: fmt.Sprintf("Missing %s block", s.TypeName),
Detail: fmt.Sprintf(
"A block of type %q is required here.", s.TypeName,
),
Subject: &content.MissingItemRange,
})
}
return cty.NullVal(s.Nested.impliedType()), diags
}
if s.Nested == nil {
panic("BlockSpec with no Nested Spec")
}
val, _, childDiags := decode(childBlock.Body, labelsForBlock(childBlock), ctx, s.Nested, false)
diags = append(diags, childDiags...)
return val, diags
}
func (s *BlockSpec) impliedType() cty.Type {
return s.Nested.impliedType()
}
func (s *BlockSpec) sourceRange(content *hcl.BodyContent, blockLabels []blockLabel) hcl.Range {
var childBlock *hcl.Block
for _, candidate := range content.Blocks {
if candidate.Type != s.TypeName {
continue
}
childBlock = candidate
break
}
if childBlock == nil {
return content.MissingItemRange
}
return sourceRange(childBlock.Body, labelsForBlock(childBlock), s.Nested)
}
// A BlockListSpec is a Spec that produces a cty list of the results of
// decoding all of the nested blocks of a given type, using a nested spec.
type BlockListSpec struct {
TypeName string
Nested Spec
MinItems int
MaxItems int
}
func (s *BlockListSpec) visitSameBodyChildren(cb visitFunc) {
// leaf node ("Nested" does not use the same body)
}
// blockSpec implementation
func (s *BlockListSpec) blockHeaderSchemata() []hcl.BlockHeaderSchema {
return []hcl.BlockHeaderSchema{
{
Type: s.TypeName,
LabelNames: findLabelSpecs(s.Nested),
},
}
}
// blockSpec implementation
func (s *BlockListSpec) nestedSpec() Spec {
return s.Nested
}
// specNeedingVariables implementation
func (s *BlockListSpec) variablesNeeded(content *hcl.BodyContent) []hcl.Traversal {
var ret []hcl.Traversal
for _, childBlock := range content.Blocks {
if childBlock.Type != s.TypeName {
continue
}
ret = append(ret, Variables(childBlock.Body, s.Nested)...)
}
return ret
}
func (s *BlockListSpec) decode(content *hcl.BodyContent, blockLabels []blockLabel, ctx *hcl.EvalContext) (cty.Value, hcl.Diagnostics) {
var diags hcl.Diagnostics
if s.Nested == nil {
panic("BlockListSpec with no Nested Spec")
}
var elems []cty.Value
var sourceRanges []hcl.Range
for _, childBlock := range content.Blocks {
if childBlock.Type != s.TypeName {
continue
}
val, _, childDiags := decode(childBlock.Body, labelsForBlock(childBlock), ctx, s.Nested, false)
diags = append(diags, childDiags...)
if u, ok := childBlock.Body.(UnknownBody); ok {
if u.Unknown() {
// If any block Body is unknown, then the entire block value
// must be unknown
return cty.UnknownVal(s.impliedType()), diags
}
}
elems = append(elems, val)
sourceRanges = append(sourceRanges, sourceRange(childBlock.Body, labelsForBlock(childBlock), s.Nested))
}
if len(elems) < s.MinItems {
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: fmt.Sprintf("Insufficient %s blocks", s.TypeName),
Detail: fmt.Sprintf("At least %d %q blocks are required.", s.MinItems, s.TypeName),
Subject: &content.MissingItemRange,
})
} else if s.MaxItems > 0 && len(elems) > s.MaxItems {
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: fmt.Sprintf("Too many %s blocks", s.TypeName),
Detail: fmt.Sprintf("No more than %d %q blocks are allowed", s.MaxItems, s.TypeName),
Subject: &sourceRanges[s.MaxItems],
})
}
if len(elems) == 0 {
return cty.ListValEmpty(s.Nested.impliedType()), diags
}
// Since our target is a list, all of the decoded elements must have the
// same type or cty.ListVal will panic below. Different types can arise
// if there is an attribute spec of type cty.DynamicPseudoType in the
// nested spec; all given values must be convertable to a single type
// in order for the result to be considered valid.
etys := make([]cty.Type, len(elems))
for i, v := range elems {
etys[i] = v.Type()
}
ety, convs := convert.UnifyUnsafe(etys)
if ety == cty.NilType {
// FIXME: This is a pretty terrible error message.
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: fmt.Sprintf("Unconsistent argument types in %s blocks", s.TypeName),
Detail: "Corresponding attributes in all blocks of this type must be the same.",
Subject: &sourceRanges[0],
})
return cty.DynamicVal, diags
}
for i, v := range elems {
if convs[i] != nil {
newV, err := convs[i](v)
if err != nil {
// FIXME: This is a pretty terrible error message.
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: fmt.Sprintf("Unconsistent argument types in %s blocks", s.TypeName),
Detail: fmt.Sprintf("Block with index %d has inconsistent argument types: %s.", i, err),
Subject: &sourceRanges[i],
})
// Bail early here so we won't panic below in cty.ListVal
return cty.DynamicVal, diags
}
elems[i] = newV
}
}
return cty.ListVal(elems), diags
}
func (s *BlockListSpec) impliedType() cty.Type {
return cty.List(s.Nested.impliedType())
}
func (s *BlockListSpec) sourceRange(content *hcl.BodyContent, blockLabels []blockLabel) hcl.Range {
// We return the source range of the _first_ block of the given type,
// since they are not guaranteed to form a contiguous range.
var childBlock *hcl.Block
for _, candidate := range content.Blocks {
if candidate.Type != s.TypeName {
continue
}
childBlock = candidate
break
}
if childBlock == nil {
return content.MissingItemRange
}
return sourceRange(childBlock.Body, labelsForBlock(childBlock), s.Nested)
}
// A BlockTupleSpec is a Spec that produces a cty tuple of the results of
// decoding all of the nested blocks of a given type, using a nested spec.
//
// This is similar to BlockListSpec, but it permits the nested blocks to have
// different result types in situations where cty.DynamicPseudoType attributes
// are present.
type BlockTupleSpec struct {
TypeName string
Nested Spec
MinItems int
MaxItems int
}
func (s *BlockTupleSpec) visitSameBodyChildren(cb visitFunc) {
// leaf node ("Nested" does not use the same body)
}
// blockSpec implementation
func (s *BlockTupleSpec) blockHeaderSchemata() []hcl.BlockHeaderSchema {
return []hcl.BlockHeaderSchema{
{
Type: s.TypeName,
LabelNames: findLabelSpecs(s.Nested),
},
}
}
// blockSpec implementation
func (s *BlockTupleSpec) nestedSpec() Spec {
return s.Nested
}
// specNeedingVariables implementation
func (s *BlockTupleSpec) variablesNeeded(content *hcl.BodyContent) []hcl.Traversal {
var ret []hcl.Traversal
for _, childBlock := range content.Blocks {
if childBlock.Type != s.TypeName {
continue
}
ret = append(ret, Variables(childBlock.Body, s.Nested)...)
}
return ret
}
func (s *BlockTupleSpec) decode(content *hcl.BodyContent, blockLabels []blockLabel, ctx *hcl.EvalContext) (cty.Value, hcl.Diagnostics) {
var diags hcl.Diagnostics
if s.Nested == nil {
panic("BlockListSpec with no Nested Spec")
}
var elems []cty.Value
var sourceRanges []hcl.Range
for _, childBlock := range content.Blocks {
if childBlock.Type != s.TypeName {
continue
}
val, _, childDiags := decode(childBlock.Body, labelsForBlock(childBlock), ctx, s.Nested, false)
diags = append(diags, childDiags...)
if u, ok := childBlock.Body.(UnknownBody); ok {
if u.Unknown() {
// If any block Body is unknown, then the entire block value
// must be unknown
return cty.UnknownVal(s.impliedType()), diags
}
}
elems = append(elems, val)
sourceRanges = append(sourceRanges, sourceRange(childBlock.Body, labelsForBlock(childBlock), s.Nested))
}
if len(elems) < s.MinItems {
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: fmt.Sprintf("Insufficient %s blocks", s.TypeName),
Detail: fmt.Sprintf("At least %d %q blocks are required.", s.MinItems, s.TypeName),
Subject: &content.MissingItemRange,
})
} else if s.MaxItems > 0 && len(elems) > s.MaxItems {
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: fmt.Sprintf("Too many %s blocks", s.TypeName),
Detail: fmt.Sprintf("No more than %d %q blocks are allowed", s.MaxItems, s.TypeName),
Subject: &sourceRanges[s.MaxItems],
})
}
if len(elems) == 0 {
return cty.EmptyTupleVal, diags
}
return cty.TupleVal(elems), diags
}
func (s *BlockTupleSpec) impliedType() cty.Type {
// We can't predict our type, because we don't know how many blocks
// there will be until we decode.
return cty.DynamicPseudoType
}
func (s *BlockTupleSpec) sourceRange(content *hcl.BodyContent, blockLabels []blockLabel) hcl.Range {
// We return the source range of the _first_ block of the given type,
// since they are not guaranteed to form a contiguous range.
var childBlock *hcl.Block
for _, candidate := range content.Blocks {
if candidate.Type != s.TypeName {
continue
}
childBlock = candidate
break
}
if childBlock == nil {
return content.MissingItemRange
}
return sourceRange(childBlock.Body, labelsForBlock(childBlock), s.Nested)
}
// A BlockSetSpec is a Spec that produces a cty set of the results of
// decoding all of the nested blocks of a given type, using a nested spec.
type BlockSetSpec struct {
TypeName string
Nested Spec
MinItems int
MaxItems int
}
func (s *BlockSetSpec) visitSameBodyChildren(cb visitFunc) {
// leaf node ("Nested" does not use the same body)
}
// blockSpec implementation
func (s *BlockSetSpec) blockHeaderSchemata() []hcl.BlockHeaderSchema {
return []hcl.BlockHeaderSchema{
{
Type: s.TypeName,
LabelNames: findLabelSpecs(s.Nested),
},
}
}
// blockSpec implementation
func (s *BlockSetSpec) nestedSpec() Spec {
return s.Nested
}
// specNeedingVariables implementation
func (s *BlockSetSpec) variablesNeeded(content *hcl.BodyContent) []hcl.Traversal {
var ret []hcl.Traversal
for _, childBlock := range content.Blocks {
if childBlock.Type != s.TypeName {
continue
}
ret = append(ret, Variables(childBlock.Body, s.Nested)...)
}
return ret
}
func (s *BlockSetSpec) decode(content *hcl.BodyContent, blockLabels []blockLabel, ctx *hcl.EvalContext) (cty.Value, hcl.Diagnostics) {
var diags hcl.Diagnostics
if s.Nested == nil {
panic("BlockSetSpec with no Nested Spec")
}
var elems []cty.Value
var sourceRanges []hcl.Range
for _, childBlock := range content.Blocks {
if childBlock.Type != s.TypeName {
continue
}
val, _, childDiags := decode(childBlock.Body, labelsForBlock(childBlock), ctx, s.Nested, false)
diags = append(diags, childDiags...)
if u, ok := childBlock.Body.(UnknownBody); ok {
if u.Unknown() {
// If any block Body is unknown, then the entire block value
// must be unknown
return cty.UnknownVal(s.impliedType()), diags
}
}
elems = append(elems, val)
sourceRanges = append(sourceRanges, sourceRange(childBlock.Body, labelsForBlock(childBlock), s.Nested))
}
if len(elems) < s.MinItems {
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: fmt.Sprintf("Insufficient %s blocks", s.TypeName),
Detail: fmt.Sprintf("At least %d %q blocks are required.", s.MinItems, s.TypeName),
Subject: &content.MissingItemRange,
})
} else if s.MaxItems > 0 && len(elems) > s.MaxItems {
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: fmt.Sprintf("Too many %s blocks", s.TypeName),
Detail: fmt.Sprintf("No more than %d %q blocks are allowed", s.MaxItems, s.TypeName),
Subject: &sourceRanges[s.MaxItems],
})
}
if len(elems) == 0 {
return cty.SetValEmpty(s.Nested.impliedType()), diags
}
// Since our target is a set, all of the decoded elements must have the
// same type or cty.SetVal will panic below. Different types can arise
// if there is an attribute spec of type cty.DynamicPseudoType in the
// nested spec; all given values must be convertable to a single type
// in order for the result to be considered valid.
etys := make([]cty.Type, len(elems))
for i, v := range elems {
etys[i] = v.Type()
}
ety, convs := convert.UnifyUnsafe(etys)
if ety == cty.NilType {
// FIXME: This is a pretty terrible error message.
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: fmt.Sprintf("Unconsistent argument types in %s blocks", s.TypeName),
Detail: "Corresponding attributes in all blocks of this type must be the same.",
Subject: &sourceRanges[0],
})
return cty.DynamicVal, diags
}
for i, v := range elems {
if convs[i] != nil {
newV, err := convs[i](v)
if err != nil {
// FIXME: This is a pretty terrible error message.
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: fmt.Sprintf("Unconsistent argument types in %s blocks", s.TypeName),
Detail: fmt.Sprintf("Block with index %d has inconsistent argument types: %s.", i, err),
Subject: &sourceRanges[i],
})
// Bail early here so we won't panic below in cty.ListVal
return cty.DynamicVal, diags
}
elems[i] = newV
}
}
return cty.SetVal(elems), diags
}
func (s *BlockSetSpec) impliedType() cty.Type {
return cty.Set(s.Nested.impliedType())
}
func (s *BlockSetSpec) sourceRange(content *hcl.BodyContent, blockLabels []blockLabel) hcl.Range {
// We return the source range of the _first_ block of the given type,
// since they are not guaranteed to form a contiguous range.
var childBlock *hcl.Block
for _, candidate := range content.Blocks {
if candidate.Type != s.TypeName {
continue
}
childBlock = candidate
break
}
if childBlock == nil {
return content.MissingItemRange
}
return sourceRange(childBlock.Body, labelsForBlock(childBlock), s.Nested)
}
// A BlockMapSpec is a Spec that produces a cty map of the results of
// decoding all of the nested blocks of a given type, using a nested spec.
//
// One level of map structure is created for each of the given label names.
// There must be at least one given label name.
type BlockMapSpec struct {
TypeName string
LabelNames []string
Nested Spec
}
func (s *BlockMapSpec) visitSameBodyChildren(cb visitFunc) {
// leaf node ("Nested" does not use the same body)
}
// blockSpec implementation
func (s *BlockMapSpec) blockHeaderSchemata() []hcl.BlockHeaderSchema {
return []hcl.BlockHeaderSchema{
{
Type: s.TypeName,
LabelNames: append(s.LabelNames, findLabelSpecs(s.Nested)...),
},
}
}
// blockSpec implementation
func (s *BlockMapSpec) nestedSpec() Spec {
return s.Nested
}
// specNeedingVariables implementation
func (s *BlockMapSpec) variablesNeeded(content *hcl.BodyContent) []hcl.Traversal {
var ret []hcl.Traversal
for _, childBlock := range content.Blocks {
if childBlock.Type != s.TypeName {
continue
}
ret = append(ret, Variables(childBlock.Body, s.Nested)...)
}
return ret
}
func (s *BlockMapSpec) decode(content *hcl.BodyContent, blockLabels []blockLabel, ctx *hcl.EvalContext) (cty.Value, hcl.Diagnostics) {
var diags hcl.Diagnostics
if s.Nested == nil {
panic("BlockMapSpec with no Nested Spec")
}
if ImpliedType(s).HasDynamicTypes() {
panic("cty.DynamicPseudoType attributes may not be used inside a BlockMapSpec")
}
elems := map[string]interface{}{}
for _, childBlock := range content.Blocks {
if childBlock.Type != s.TypeName {
continue
}
if u, ok := childBlock.Body.(UnknownBody); ok {
if u.Unknown() {
// If any block Body is unknown, then the entire block value
// must be unknown
return cty.UnknownVal(s.impliedType()), diags
}
}
childLabels := labelsForBlock(childBlock)
val, _, childDiags := decode(childBlock.Body, childLabels[len(s.LabelNames):], ctx, s.Nested, false)
targetMap := elems
for _, key := range childBlock.Labels[:len(s.LabelNames)-1] {
if _, exists := targetMap[key]; !exists {
targetMap[key] = make(map[string]interface{})
}
targetMap = targetMap[key].(map[string]interface{})
}
diags = append(diags, childDiags...)
key := childBlock.Labels[len(s.LabelNames)-1]
if _, exists := targetMap[key]; exists {
labelsBuf := bytes.Buffer{}
for _, label := range childBlock.Labels {
fmt.Fprintf(&labelsBuf, " %q", label)
}
diags = append(diags, &hcl.Diagnostic{
Severity: hcl.DiagError,
Summary: fmt.Sprintf("Duplicate %s block", s.TypeName),
Detail: fmt.Sprintf(
"A block for %s%s was already defined. The %s labels must be unique.",
s.TypeName, labelsBuf.String(), s.TypeName,
),
Subject: &childBlock.DefRange,
})
continue
}
targetMap[key] = val
}
if len(elems) == 0 {
return cty.MapValEmpty(s.Nested.impliedType()), diags
}
var ctyMap func(map[string]interface{}, int) cty.Value
ctyMap = func(raw map[string]interface{}, depth int) cty.Value {
vals := make(map[string]cty.Value, len(raw))
if depth == 1 {
for k, v := range raw {
vals[k] = v.(cty.Value)
}
} else {
for k, v := range raw {
vals[k] = ctyMap(v.(map[string]interface{}), depth-1)
}
}
return cty.MapVal(vals)
}
return ctyMap(elems, len(s.LabelNames)), diags
}
func (s *BlockMapSpec) impliedType() cty.Type {
ret := s.Nested.impliedType()
for _ = range s.LabelNames {
ret = cty.Map(ret)
}
return ret
}
func (s *BlockMapSpec) sourceRange(content *hcl.BodyContent, blockLabels []blockLabel) hcl.Range {
// We return the source range of the _first_ block of the given type,
// since they are not guaranteed to form a contiguous range.
var childBlock *hcl.Block
for _, candidate := range content.Blocks {
if candidate.Type != s.TypeName {
continue
}