-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathpreprocess_img.py
57 lines (49 loc) · 1.86 KB
/
preprocess_img.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import sys
import torch
import torch.utils.data as data_utils
import numpy as np
from scipy.io import loadmat
import os
import argparse
import pickle
def load_omniglot(raw_file, output_file, n_validation=2000):
# set args
input_size = [1, 28, 28]
input_type = 'binary'
dynamic_binarization = True
# start processing
def reshape_data(data):
return data.reshape((-1, 28, 28)).reshape((-1, 28*28), order='fortran')
omni_raw = loadmat(raw_file)
# train and test data
train_data = reshape_data(omni_raw['data'].T.astype('float32'))
x_test = reshape_data(omni_raw['testdata'].T.astype('float32'))
# shuffle train data
np.random.shuffle(train_data)
# set train and validation data
x_train = train_data[:-n_validation]
x_val = train_data[-n_validation:]
# binarize val/test (train is dynamically binarized)
x_val = np.random.binomial(1, x_val)
x_test = np.random.binomial(1, x_test)
num_train = len(x_train)
num_val = len(x_val)
num_test = len(x_test)
print('Train/Val/Test')
print(num_train, num_val, num_test)
print('saving data...')
torch.save([torch.from_numpy(x_train).float().contiguous().view(num_train, 1, 28, 28),
torch.from_numpy(x_val).float().contiguous().view(num_val, 1, 28, 28),
torch.from_numpy(x_test).float().contiguous().view(num_test, 1, 28, 28)],
output_file)
print('done!')
def main(arguments):
parser = argparse.ArgumentParser(
description=__doc__,
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--raw_file', help="path to chardata.mat file")
parser.add_argument('--output', help="where to save the hdf5 file")
args = parser.parse_args(arguments)
load_omniglot(args.raw_file, args.output)
if __name__ == '__main__':
sys.exit(main(sys.argv[1:]))