-
Notifications
You must be signed in to change notification settings - Fork 0
/
test.py
57 lines (44 loc) · 1.75 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import cv2
from cvzone.HandTrackingModule import HandDetector
from cvzone.ClassificationModule import Classifier
import numpy as np
import math
cap=cv2.VideoCapture(0)
detector = HandDetector(maxHands=1)
classifier = Classifier("Model/keras_model.h5","Model/labels.txt")
offset=20
imgSize=300
labels = ["A", "B", "C", "D", "E", "F", "G", "H", "I", "J", "K", "L", "M", "N", "O", "P", "Q", "R", "S", "T", "U", "V", "W", "X", "Y", "Z"]
while True:
success, img = cap.read()
impOutput = img.copy()
hands, img = detector.findHands(img)
if hands:
hand=hands[0]
x, y, w, h = hand['bbox']
imgWhite = np.ones((imgSize, imgSize, 3), np.uint8)*255
imgCrop = img[y-offset:y+h+offset, x-offset:x+w+offset]
imgCropShape = imgCrop.shape
aspectRatio = h/w
if aspectRatio > 1:
k = imgSize/h
wCal = math.ceil(k*w)
imgResize = cv2.resize(imgCrop,(wCal,imgSize))
imgResizeShape = imgResize.shape
wGap = math.ceil((300-wCal)/2)
imgWhite[:, wGap:wCal+wGap] = imgResize
prediction, index = classifier.getPrediction(imgWhite)
else:
k = imgSize / w
hCal = math.ceil(k * h)
imgResize = cv2.resize(imgCrop, (imgSize, hCal))
imgResizeShape = imgResize.shape
hGap = math.ceil((300 - hCal) / 2)
imgWhite[hGap:hCal + hGap, :] = imgResize
prediction, index = classifier.getPrediction(imgWhite)
cv2.putText(impOutput,labels[index],(x,y-20),cv2.FONT_HERSHEY_COMPLEX,2, (255,0,255),2)
# cv2.imshow('imgcrop', imgCrop)
# cv2.imshow('imgWhite', imgWhite)
result_out = labels[index]
cv2.imshow("frame",impOutput)
key = cv2.waitKey(1)