-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathdata_generators.py
281 lines (242 loc) · 11.2 KB
/
data_generators.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
import json
import logging
import os
import pickle
import networkx as nx
import numpy as np
import scipy.sparse as sp
import argparse
# -------- Generate community graphs --------
def n_community(num_communities, max_nodes, p_inter=0.05):
# -------- From Niu et al. (2020) --------
assert num_communities > 1
one_community_size = max_nodes // num_communities
c_sizes = [one_community_size] * num_communities
total_nodes = one_community_size * num_communities
p_make_a_bridge = p_inter * 2 / ((num_communities - 1) * one_community_size)
print(num_communities, total_nodes, end=' ')
graphs = [nx.gnp_random_graph(c_sizes[i], 0.7, seed=i) for i in range(len(c_sizes))]
G = nx.disjoint_union_all(graphs)
communities = list(G.subgraph(c) for c in nx.connected_components(G))
add_edge = 0
for i in range(len(communities)):
subG1 = communities[i]
nodes1 = list(subG1.nodes())
for j in range(i + 1, len(communities)): # loop for C_M^2 times
subG2 = communities[j]
nodes2 = list(subG2.nodes())
has_inter_edge = False
for n1 in nodes1: # loop for N times
for n2 in nodes2: # loop for N times
if np.random.rand() < p_make_a_bridge:
G.add_edge(n1, n2)
has_inter_edge = True
add_edge += 1
if not has_inter_edge:
G.add_edge(nodes1[0], nodes2[0])
add_edge += 1
print('connected comp: ', len( list(G.subgraph(c) for c in nx.connected_components(G)) ),
'add edges: ', add_edge)
print(G.number_of_edges())
return G
NAME_TO_NX_GENERATOR = {
'community': n_community,
'grid': nx.generators.grid_2d_graph,
# -------- Additional datasets --------
'gnp': nx.generators.fast_gnp_random_graph, # fast_gnp_random_graph(n, p, seed=None, directed=False)
'ba': nx.generators.barabasi_albert_graph, # barabasi_albert_graph(n, m, seed=None)
'pow_law': lambda **kwargs: nx.configuration_model(nx.generators.random_powerlaw_tree_sequence(**kwargs, gamma=3,
tries=2000)),
'except_deg': lambda **kwargs: nx.expected_degree_graph(**kwargs, selfloops=False),
'cycle': nx.cycle_graph,
'c_l': nx.circular_ladder_graph,
'lobster': nx.random_lobster
}
class GraphGenerator:
def __init__(self, graph_type='grid', possible_params_dict=None, corrupt_func=None):
if possible_params_dict is None:
possible_params_dict = {}
assert isinstance(possible_params_dict, dict)
self.count = {k: 0 for k in possible_params_dict}
self.possible_params = possible_params_dict
self.corrupt_func = corrupt_func
self.nx_generator = NAME_TO_NX_GENERATOR[graph_type]
def __call__(self):
params = {}
for k, v_list in self.possible_params.items():
params[k] = np.random.choice(v_list)
graph = self.nx_generator(**params)
graph = nx.relabel.convert_node_labels_to_integers(graph)
if self.corrupt_func is not None:
graph = self.corrupt_func(self.corrupt_func)
return graph
# -------- Generate synthetic graphs --------
def gen_graph_list(graph_type='grid', possible_params_dict=None, corrupt_func=None, length=1024, save_dir=None,
file_name=None, max_node=None, min_node=None):
params = locals()
logging.info('gen data: ' + json.dumps(params))
if file_name is None:
file_name = graph_type + '_' + str(length)
file_path = os.path.join(save_dir, file_name)
graph_generator = GraphGenerator(graph_type=graph_type,
possible_params_dict=possible_params_dict,
corrupt_func=corrupt_func)
graph_list = []
i = 0
max_N = 0
while i < length:
graph = graph_generator()
if max_node is not None and graph.number_of_nodes() > max_node:
continue
if min_node is not None and graph.number_of_nodes() < min_node:
continue
print(i, graph.number_of_nodes(), graph.number_of_edges())
max_N = max(max_N, graph.number_of_nodes())
if graph.number_of_nodes() <= 1:
continue
graph_list.append(graph)
i += 1
if save_dir is not None:
if not os.path.isdir(save_dir):
os.makedirs(save_dir)
with open(file_path + '.pkl', 'wb') as f:
pickle.dump(obj=graph_list, file=f, protocol=pickle.HIGHEST_PROTOCOL)
with open(file_path + '.txt', 'w') as f:
f.write(json.dumps(params))
f.write(f'max node number: {max_N}')
print(max_N)
return graph_list
def load_dataset(data_dir='data', file_name=None, need_set=False):
file_path = os.path.join(data_dir, file_name)
with open(file_path + '.pkl', 'rb') as f:
graph_list = pickle.load(f)
return graph_list
# -------- load ENZYMES, PROTEIN and DD dataset --------
def graph_load_batch(min_num_nodes=20, max_num_nodes=1000, name='ENZYMES', node_attributes=True, graph_labels=True):
"""
load many graphs, e.g. enzymes
:return: a list of graphs
"""
print('Loading graph dataset: ' + str(name))
G = nx.Graph()
# -------- load data --------
path = 'dataset/' + name + '/'
data_adj = np.loadtxt(path + name + '_A.txt', delimiter=',').astype(int)
data_node_att = []
if node_attributes:
data_node_att = np.loadtxt(path + name + '_node_attributes.txt', delimiter=',')
data_node_label = np.loadtxt(path + name + '_node_labels.txt', delimiter=',').astype(int)
data_graph_indicator = np.loadtxt(path + name + '_graph_indicator.txt', delimiter=',').astype(int)
if graph_labels:
data_graph_labels = np.loadtxt(path + name + '_graph_labels.txt', delimiter=',').astype(int)
data_tuple = list(map(tuple, data_adj))
# -------- add edges --------
G.add_edges_from(data_tuple)
# -------- add node attributes --------
for i in range(data_node_label.shape[0]):
if node_attributes:
G.add_node(i + 1, feature=data_node_att[i])
G.add_node(i + 1, label=data_node_label[i])
G.remove_nodes_from(list(nx.isolates(G)))
print(G.number_of_nodes())
print(G.number_of_edges())
# -------- split into graphs --------
graph_num = data_graph_indicator.max()
node_list = np.arange(data_graph_indicator.shape[0]) + 1
graphs = []
max_nodes = 0
for i in range(graph_num):
# -------- find the nodes for each graph --------
nodes = node_list[data_graph_indicator == i + 1]
G_sub = G.subgraph(nodes)
if graph_labels:
G_sub.graph['label'] = data_graph_labels[i]
if min_num_nodes <= G_sub.number_of_nodes() <= max_num_nodes:
graphs.append(G_sub)
if G_sub.number_of_nodes() > max_nodes:
max_nodes = G_sub.number_of_nodes()
print(f'Graphs loaded, total num: {len(graphs)}')
return graphs
def parse_index_file(filename):
index = []
for line in open(filename):
index.append(int(line.strip()))
return index
# -------- load cora, citeseer and pubmed dataset --------
def graph_load(dataset='cora'):
"""
Load a single graph dataset
:param dataset: dataset name
:return:
"""
names = ['x', 'tx', 'allx', 'graph']
objects = []
for i in range(len(names)):
load = pickle.load(open("dataset/ind.{}.{}".format(dataset, names[i]), 'rb'), encoding='latin1')
objects.append(load)
x, tx, allx, graph = tuple(objects)
test_idx_reorder = parse_index_file("dataset/ind.{}.test.index".format(dataset))
test_idx_range = np.sort(test_idx_reorder)
if dataset == 'citeseer':
# -------- Fix citeseer dataset (there are some isolated nodes in the graph) --------
# -------- Find isolated nodes, add them as zero-vecs into the right position --------
test_idx_range_full = range(min(test_idx_reorder), max(test_idx_reorder) + 1)
tx_extended = sp.lil_matrix((len(test_idx_range_full), x.shape[1]))
tx_extended[test_idx_range - min(test_idx_range), :] = tx
tx = tx_extended
features = sp.vstack((allx, tx)).tolil()
features[test_idx_reorder, :] = features[test_idx_range, :]
G = nx.from_dict_of_lists(graph)
return features, G
def citeseer_ego(radius=3, node_min=50, node_max=400):
_, G = graph_load(dataset='citeseer')
G = max([G.subgraph(c) for c in nx.connected_components(G)], key=len)
G = nx.convert_node_labels_to_integers(G)
graphs = []
for i in range(G.number_of_nodes()):
G_ego = nx.ego_graph(G, i, radius=radius)
assert isinstance(G_ego, nx.Graph)
if G_ego.number_of_nodes() >= node_min and (G_ego.number_of_nodes() <= node_max):
G_ego.remove_edges_from(nx.selfloop_edges(G_ego))
graphs.append(G_ego)
return graphs
def save_dataset(data_dir, graphs, save_name):
if not os.path.isdir(data_dir):
os.makedirs(data_dir)
file_path = os.path.join('data', save_name)
print(save_name, len(graphs))
with open(file_path + '.pkl', 'wb') as f:
pickle.dump(obj=graphs, file=f, protocol=pickle.HIGHEST_PROTOCOL)
with open(file_path + '.txt', 'w') as f:
f.write(save_name + '\n')
f.write(str(len(graphs)))
# -------- Generate datasets --------
def generate_dataset(data_dir='data', dataset='community_small'):
if dataset == 'community_small':
res_graph_list = gen_graph_list(graph_type='community', possible_params_dict={
'num_communities': [2],
'max_nodes': np.arange(12, 21).tolist()},
corrupt_func=None, length=100, save_dir=data_dir, file_name=dataset)
elif dataset == 'grid':
res_graph_list = gen_graph_list(graph_type='grid', possible_params_dict={
'm': np.arange(10, 20).tolist(),
'n': np.arange(10, 20).tolist()},
corrupt_func=None, length=100, save_dir=data_dir, file_name=dataset)
elif dataset == 'ego_small':
graphs = citeseer_ego(radius=1, node_min=4, node_max=18)[:200]
save_dataset(data_dir, graphs, dataset)
print(max([g.number_of_nodes() for g in graphs]))
elif dataset == 'ENZYMES':
graphs = graph_load_batch(min_num_nodes=10, max_num_nodes=1000, name=dataset,
node_attributes=False, graph_labels=True)
save_dataset(data_dir, graphs, dataset)
print(max([g.number_of_nodes() for g in graphs]))
else:
raise NotImplementedError(f'Dataset {datset} not supproted.')
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Generate dataset')
parser.add_argument('--data-dir', type=str, default='data', help='directory to save the generated dataset')
parser.add_argument('--dataset', type=str, default='community_small', help='dataset to generate',
choices=['ego_small', 'community_small', 'ENZYMES', 'grid'])
args = parser.parse_args()
generate_dataset(args.data_dir, args.dataset)