Skip to content

Latest commit

 

History

History
72 lines (47 loc) · 3.53 KB

README.md

File metadata and controls

72 lines (47 loc) · 3.53 KB

BertSumExt

This code is taken from https://github.com/nlpyang/PreSumm

Environment: Dockerfile is presented in for this BertSumExt

Changes from Original Code:

  • Set extractive summarizer to return one sentence instead of top 3 sentences

Data Preparation For CNN/Dailymail

Option 1: download the processed data

Pre-processed data

unzip the zipfile and put all .pt files into bert_data

Option 2: process the data yourself

Step 1 Download Stories

Download and unzip the stories directories from here for both CNN and Daily Mail. Put all .story files in one directory (e.g. ../raw_stories)

Step 2. Download Stanford CoreNLP

We will need Stanford CoreNLP to tokenize the data. Download it here and unzip it. Then add the following command to your bash_profile:

export CLASSPATH=/path/to/stanford-corenlp-full-2017-06-09/stanford-corenlp-3.8.0.jar

replacing /path/to/ with the path to where you saved the stanford-corenlp-full-2017-06-09 directory.

Step 3. Sentence Splitting and Tokenization

python preprocess.py -mode tokenize -raw_path RAW_PATH -save_path TOKENIZED_PATH
  • RAW_PATH is the directory containing story files (../raw_stories), JSON_PATH is the target directory to save the generated json files (../merged_stories_tokenized)

Step 4. Format to Simpler Json Files

python preprocess.py -mode format_to_lines -raw_path RAW_PATH -save_path JSON_PATH -n_cpus 1 -use_bert_basic_tokenizer false -map_path MAP_PATH
  • RAW_PATH is the directory containing tokenized files (../merged_stories_tokenized), JSON_PATH is the target directory to save the generated json files (../json_data/cnndm), MAP_PATH is the directory containing the urls files (../urls)

Step 5. Format to PyTorch Files

python preprocess.py -mode format_to_bert -raw_path JSON_PATH -save_path BERT_DATA_PATH  -lower -n_cpus 1 -log_file ../logs/preprocess.log
  • JSON_PATH is the directory containing json files (../json_data), BERT_DATA_PATH is the target directory to save the generated binary files (../bert_data)

Model Training

First run: For the first time, you should use single-GPU, so the code can download the BERT model. Use -visible_gpus -1, after downloading, you could kill the process and rerun the code with multi-GPUs.

Extractive Setting

python train.py -task ext -mode train -bert_data_path BERT_DATA_PATH -ext_dropout 0.1 -model_path MODEL_PATH -lr 2e-3 -visible_gpus 0,1,2 -report_every 50 -save_checkpoint_steps 1000 -batch_size 3000 -train_steps 50000 -accum_count 2 -log_file ../logs/ext_bert_cnndm -use_interval true -warmup_steps 10000 -max_pos 512

Model Evaluation

CNN/DM

 python train.py -task ext -mode validate -batch_size 3000 -test_batch_size 500 -bert_data_path BERT_DATA_PATH -log_file ../logs/val_ext_bert_cnndm -model_path MODEL_PATH -sep_optim true -use_interval true -visible_gpus 1 -max_pos 512 -alpha 0.95 -result_path ../logs/ext_bert_cnndm 
  • -mode can be {validate, test}, where validate will inspect the model directory and evaluate the model for each newly saved checkpoint, test need to be used with -test_from, indicating the checkpoint you want to use
  • MODEL_PATH is the directory of saved checkpoints
  • use -mode validate with -test_all, the system will load all saved checkpoints and select the top ones to generate summaries (this will take a while)