Skip to content

Latest commit

 

History

History
81 lines (55 loc) · 4.47 KB

README.md

File metadata and controls

81 lines (55 loc) · 4.47 KB

FedCR: Personalized Federated Learning Based on Across-Client Common Representation with Conditional Mutual Information Regularization

This directory contains source code for evaluating federated learning with different methods on various models and tasks. The code was developed for a paper, "FedCR: Personalized Federated Learning Based on Across-Client Common Representation with Conditional Mutual Information Regularization".

Requirements

Some pip packages are required by this library, and may need to be installed. For more details, see requirements.txt. We recommend running pip install --requirement "requirements.txt".

Below we give a summary of the datasets, tasks, and models used in this code.

Task and dataset summary

Note that we put the dataset under the directory .\federated-learning-master\Folder

Directory Model Task Summary
CIFAR-10 CNN (with two convolutional layers) Image classification
CIFAR-100 CNN (with two convolutional layers) Image classification
EMNIST NN (fully connected neural network) Digit recognition
FMNIST CNN (with two convolutional layer Image classification

Training

In this code, we compare 10 optimization methods: FedAvg, FedAvg-FT, FedPer, LG-FedAvg, FedRep, FedBABU, Ditto, FedSR-FT, FedPAC, and FedCR. Those methods use vanilla SGD on clients. To recreate our experimental results for each method, for example, for 100 clients and 10% participation rate, on the cifar100 data set with Dirichlet (0.3) split, run those commands for different methods:

FedAvg and *FedAvg-FT:

python main_fed.py  --filepath FedAvg.txt --dataset CIFAR100 --method fedavg --lr 0.01 --local_ep 10 --lr_decay 1 --rule Dirichlet --dir_a 0.3 --gpu 0 --epoch 500 --beta 0.001 --bs 10 --local_bs 48

FedPer:

python main_fed.py  --filepath FedPer.txt --dataset CIFAR100 --method fedper --lr 0.01 --local_ep 10 --lr_decay 1 --rule Dirichlet --dir_a 1 --gpu 0 --epoch 500 --beta 0.001 --bs 10 --local_bs 48

LG-FedAvg:

python main_fed.py  --filepath LG-FedAvg.txt --dataset CIFAR100 --method lg --lr 0.01 --local_ep 10 --lr_decay 1 --rule Dirichlet --dir_a 0.3 --gpu 0 --epoch 500 --beta 0.001 --bs 10 --local_bs 48

FedRep:

python main_fed.py  --filepath FedRep.txt --dataset CIFAR100 --method fedrep --lr 0.01 --local_ep 10 --local_rep_ep 1 --lr_decay 1 --rule Dirichlet --dir_a 0.3 --gpu 0 --epoch 500 --beta 0.001 --bs 10 --local_bs 48

FedBABU:

python main_fed.py  --filepath FedBABU.txt --dataset CIFAR100 --method fedbabu --lr 0.01 --local_ep 10 --lr_decay 1 --rule Dirichlet --dir_a 0.3 --gpu 0 --epoch 500 --beta 0.001 --bs 10 --local_bs 48

Ditto:

python /main_fed_ditto.py  --filepath Ditto.txt --dataset CIFAR100 --method ditto --mu 0.1 --lr 0.5 --local_ep 10 --lr_decay 1 --rule Dirichlet --dir_a 0.3 --gpu 0 --epoch 500 --beta 0.001 --bs 10 --local_bs 48

FedSR-FT:

python main_fedSR.py  --filepath FedSR-FT.txt --dataset CIFAR100 --method fedSR --lr 0.005 --local_ep 10 --lr_decay 1 --rule Dirichlet --dir_a 0.3 --gpu 0 --num_avg_train 1 --num_avg 1 --epoch 500 --dimZ 256 --CMI 0.001 --L2R 0.001 --bs 10 --local_bs 48 --beta2 1

FedPAC:

python main_fed_PAC.py  --filepath FedPAC.txt --dataset CIFAR100 --method fedPAC --lr 0.01 --beta_PAC 1 --local_ep 10 --local_rep_ep 1 --lr_decay 1 --rule Dirichlet --dir_a 0.3 --gpu 0 --epoch 500 --dimZ 512 --beta 0.001 --bs 10 --local_bs 48

FedCR:

python main_fed.py  --filepath FedCR.txt --dataset CIFAR100 --method FedCR --lr 0.05 --local_ep 10 --lr_decay 1 --rule Dirichlet --dir_a 0.3 --gpu 0 --num_avg_train 18 --num_avg 18 --epoch 500 --dimZ 512 --beta 0.0001 --bs 10 --local_bs 48 --beta2 1

Other hyperparameters and reproducibility

All other hyperparameters are set by default to the values used in the Experiment Details of our Appendix. This includes the batch size, the number of clients per round, the number of client local updates, local learning rate, and model parameter flags. While they can be set for different behavior (such as varying the number of client local updates), they should not be changed if one wishes to reproduce the results from our paper.