-
Notifications
You must be signed in to change notification settings - Fork 21
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
loss is nan #6
Comments
Hi, could you provide more details, such as, the running command, and which config file you used |
My running command is |
Did you use KITTI-Road data? How many GPUs? |
I don't use KITTI-Road data. I commnet them. I just use SemanticKitti dataset. I use 4*3090
|
There are some output log I just ran, I will use your config later to train and see if I can reproduce your problem. You can check the residual image by the way. output logexport CUDA_VISIBLE_DEVICES=0,5,6,7
python train.py -d ~/Repo/MotionSeg3D/data/ -ac ./train_yaml/mos_coarse_stage.yml -l log/ours_motionseg3d
Opening arch config file ./train_yaml/mos_coarse_stage.yml
Opening arch config file config/labels/semantic-kitti-mos.yaml
Channel of range image input = 5
Number of residual images input = 8
----------
INTERFACE:
dataset: /home1/xxxxxx/Repo/MotionSeg3D/data/
arch_cfg: ./train_yaml/mos_coarse_stage.yml
data_cfg: config/labels/semantic-kitti-mos.yaml
Total of Trainable Parameters: 13.61M
log: log/ours_motionseg3d/logs/2022-9-06-15:55
pretrained: None
----------
No pretrained directory found.
Copying files to log/ours_motionseg3d/logs/2022-9-06-15:55 for further reference.
Sequences folder exists! Using sequences from /home/xxxxxxx/Repo/MotionSeg3D/data/sequences
parsing seq 00
parsing seq 01
parsing seq 02
parsing seq 03
parsing seq 04
parsing seq 05
parsing seq 06
parsing seq 07
parsing seq 09
parsing seq 10
parsing seq 30
parsing seq 31
parsing seq 32
parsing seq 33
parsing seq 34
parsing seq 40
There are 22035 frames in total.
Drop residual_images_1 in seq00: 4541 -> 1558
Drop residual_images_2 in seq00: 4541 -> 1558
Drop residual_images_3 in seq00: 4541 -> 1558
Drop residual_images_4 in seq00: 4541 -> 1558
Drop residual_images_5 in seq00: 4541 -> 1558
Drop residual_images_6 in seq00: 4541 -> 1558
Drop residual_images_7 in seq00: 4541 -> 1558
Drop residual_images_8 in seq00: 4541 -> 1558
Seq 00 drop 2983: 4541 -> 1558
Drop residual_images_1 in seq01: 1101 -> 899
Drop residual_images_2 in seq01: 1101 -> 899
Drop residual_images_3 in seq01: 1101 -> 899
Drop residual_images_4 in seq01: 1101 -> 899
Drop residual_images_5 in seq01: 1101 -> 899
Drop residual_images_6 in seq01: 1101 -> 899
Drop residual_images_7 in seq01: 1101 -> 899
Drop residual_images_8 in seq01: 1101 -> 899
Seq 01 drop 202: 1101 -> 899
Drop residual_images_1 in seq02: 4661 -> 1237
Drop residual_images_2 in seq02: 4661 -> 1237
Drop residual_images_3 in seq02: 4661 -> 1237
Drop residual_images_4 in seq02: 4661 -> 1237
Drop residual_images_5 in seq02: 4661 -> 1237
Drop residual_images_6 in seq02: 4661 -> 1237
Drop residual_images_7 in seq02: 4661 -> 1237
Drop residual_images_8 in seq02: 4661 -> 1237
Seq 02 drop 3424: 4661 -> 1237
Drop residual_images_1 in seq03: 801 -> 341
Drop residual_images_2 in seq03: 801 -> 341
Drop residual_images_3 in seq03: 801 -> 341
Drop residual_images_4 in seq03: 801 -> 341
Drop residual_images_5 in seq03: 801 -> 341
Drop residual_images_6 in seq03: 801 -> 341
Drop residual_images_7 in seq03: 801 -> 341
Drop residual_images_8 in seq03: 801 -> 341
Seq 03 drop 460: 801 -> 341
Drop residual_images_1 in seq04: 271 -> 271
Drop residual_images_2 in seq04: 271 -> 271
Drop residual_images_3 in seq04: 271 -> 271
Drop residual_images_4 in seq04: 271 -> 271
Drop residual_images_5 in seq04: 271 -> 271
Drop residual_images_6 in seq04: 271 -> 271
Drop residual_images_7 in seq04: 271 -> 271
Drop residual_images_8 in seq04: 271 -> 271
Seq 04 drop 0: 271 -> 271
Drop residual_images_1 in seq05: 2761 -> 1423
Drop residual_images_2 in seq05: 2761 -> 1423
Drop residual_images_3 in seq05: 2761 -> 1423
Drop residual_images_4 in seq05: 2761 -> 1423
Drop residual_images_5 in seq05: 2761 -> 1423
Drop residual_images_6 in seq05: 2761 -> 1423
Drop residual_images_7 in seq05: 2761 -> 1423
Drop residual_images_8 in seq05: 2761 -> 1423
Seq 05 drop 1338: 2761 -> 1423
Drop residual_images_1 in seq06: 1101 -> 428
Drop residual_images_2 in seq06: 1101 -> 428
Drop residual_images_3 in seq06: 1101 -> 428
Drop residual_images_4 in seq06: 1101 -> 428
Drop residual_images_5 in seq06: 1101 -> 428
Drop residual_images_6 in seq06: 1101 -> 428
Drop residual_images_7 in seq06: 1101 -> 428
Drop residual_images_8 in seq06: 1101 -> 428
Seq 06 drop 673: 1101 -> 428
Drop residual_images_1 in seq07: 1101 -> 871
Drop residual_images_2 in seq07: 1101 -> 871
Drop residual_images_3 in seq07: 1101 -> 871
Drop residual_images_4 in seq07: 1101 -> 871
Drop residual_images_5 in seq07: 1101 -> 871
Drop residual_images_6 in seq07: 1101 -> 871
Drop residual_images_7 in seq07: 1101 -> 871
Drop residual_images_8 in seq07: 1101 -> 871
Seq 07 drop 230: 1101 -> 871
Drop residual_images_1 in seq09: 1591 -> 827
Drop residual_images_2 in seq09: 1591 -> 827
Drop residual_images_3 in seq09: 1591 -> 827
Drop residual_images_4 in seq09: 1591 -> 827
Drop residual_images_5 in seq09: 1591 -> 827
Drop residual_images_6 in seq09: 1591 -> 827
Drop residual_images_7 in seq09: 1591 -> 827
Drop residual_images_8 in seq09: 1591 -> 827
Seq 09 drop 764: 1591 -> 827
Drop residual_images_1 in seq10: 1201 -> 524
Drop residual_images_2 in seq10: 1201 -> 524
Drop residual_images_3 in seq10: 1201 -> 524
Drop residual_images_4 in seq10: 1201 -> 524
Drop residual_images_5 in seq10: 1201 -> 524
Drop residual_images_6 in seq10: 1201 -> 524
Drop residual_images_7 in seq10: 1201 -> 524
Drop residual_images_8 in seq10: 1201 -> 524
Seq 10 drop 677: 1201 -> 524
Drop residual_images_1 in seq30: 297 -> 297
Drop residual_images_2 in seq30: 297 -> 297
Drop residual_images_3 in seq30: 297 -> 297
Drop residual_images_4 in seq30: 297 -> 297
Drop residual_images_5 in seq30: 297 -> 297
Drop residual_images_6 in seq30: 297 -> 297
Drop residual_images_7 in seq30: 297 -> 297
Drop residual_images_8 in seq30: 297 -> 297
Seq 30 drop 0: 297 -> 297
Drop residual_images_1 in seq31: 188 -> 188
Drop residual_images_2 in seq31: 188 -> 188
Drop residual_images_3 in seq31: 188 -> 188
Drop residual_images_4 in seq31: 188 -> 188
Drop residual_images_5 in seq31: 188 -> 188
Drop residual_images_6 in seq31: 188 -> 188
Drop residual_images_7 in seq31: 188 -> 188
Drop residual_images_8 in seq31: 188 -> 188
Seq 31 drop 0: 188 -> 188
Drop residual_images_1 in seq32: 430 -> 430
Drop residual_images_2 in seq32: 430 -> 430
Drop residual_images_3 in seq32: 430 -> 430
Drop residual_images_4 in seq32: 430 -> 430
Drop residual_images_5 in seq32: 430 -> 430
Drop residual_images_6 in seq32: 430 -> 430
Drop residual_images_7 in seq32: 430 -> 430
Drop residual_images_8 in seq32: 430 -> 430
Seq 32 drop 0: 430 -> 430
Drop residual_images_1 in seq33: 430 -> 430
Drop residual_images_2 in seq33: 430 -> 430
Drop residual_images_3 in seq33: 430 -> 430
Drop residual_images_4 in seq33: 430 -> 430
Drop residual_images_5 in seq33: 430 -> 430
Drop residual_images_6 in seq33: 430 -> 430
Drop residual_images_7 in seq33: 430 -> 430
Drop residual_images_8 in seq33: 430 -> 430
Seq 33 drop 0: 430 -> 430
Drop residual_images_1 in seq34: 390 -> 390
Drop residual_images_2 in seq34: 390 -> 390
Drop residual_images_3 in seq34: 390 -> 390
Drop residual_images_4 in seq34: 390 -> 390
Drop residual_images_5 in seq34: 390 -> 390
Drop residual_images_6 in seq34: 390 -> 390
Drop residual_images_7 in seq34: 390 -> 390
Drop residual_images_8 in seq34: 390 -> 390
Seq 34 drop 0: 390 -> 390
Drop residual_images_1 in seq40: 1170 -> 1170
Drop residual_images_2 in seq40: 1170 -> 1170
Drop residual_images_3 in seq40: 1170 -> 1170
Drop residual_images_4 in seq40: 1170 -> 1170
Drop residual_images_5 in seq40: 1170 -> 1170
Drop residual_images_6 in seq40: 1170 -> 1170
Drop residual_images_7 in seq40: 1170 -> 1170
Drop residual_images_8 in seq40: 1170 -> 1170
Seq 40 drop 0: 1170 -> 1170
Remove 10751 frames.
New use 11284 frames.
Using 11284 scans from sequences [0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 30, 31, 32, 33, 34, 40]
Sequences folder exists! Using sequences from /home/xxxxxx/Repo/MotionSeg3D/data/sequences
parsing seq 08
parsing seq 35
parsing seq 36
parsing seq 37
parsing seq 38
parsing seq 39
parsing seq 41
There are 6960 frames in total.
Using 6960 scans from sequences [8, 35, 36, 37, 38, 39, 41]
Loss weights from content: tensor([ 0.0000, 1.0014, 296.4371])
Channel of range image input = 5
Number of residual images input = 8
Training in device: cuda
Let's use 4 GPUs!
Ignoring class 0 in IoU evaluation
[IOU EVAL] IGNORE: tensor([0])
[IOU EVAL] INCLUDE: tensor([1, 2])
Lr: 1.773e-05 | Update: 1.579e-01 mean,3.646e-01 std | Epoch: [0][0/564] | Time 48.405 (48.405) | Data 19.875 (19.875) | Loss 1.9651 (1.9651) | acc 0.417 (0.417) | IoU 0.210 (0.210) | [66 days, 20:33:02]
Lr: 1.950e-04 | Update: 1.278e-02 mean,3.152e-02 std | Epoch: [0][10/564] | Time 2.075 (6.279) | Data 0.095 (1.888) | Loss 1.9103 (1.9772) | acc 0.460 (0.431) | IoU 0.234 (0.218) | [7 days, 23:53:33]
Lr: 3.723e-04 | Update: 6.040e-03 mean,1.477e-02 std | Epoch: [0][20/564] | Time 1.953 (4.204) | Data 0.111 (1.035) | Loss 1.7721 (1.9081) | acc 0.561 (0.469) | IoU 0.284 (0.237) | [5 days, 3:06:25]
Lr: 5.496e-04 | Update: 2.098e-03 mean,5.005e-03 std | Epoch: [0][30/564] | Time 1.870 (3.486) | Data 0.107 (0.733) | Loss 1.6438 (1.8074) | acc 0.514 (0.497) | IoU 0.259 (0.252) | [4 days, 3:06:18]
Lr: 7.270e-04 | Update: 3.818e-03 mean,9.948e-03 std | Epoch: [0][40/564] | Time 1.828 (3.141) | Data 0.086 (0.577) | Loss 1.4263 (1.7247) | acc 0.547 (0.511) | IoU 0.279 (0.259) | [3 days, 15:19:15]
Lr: 9.043e-04 | Update: 1.696e-03 mean,4.019e-03 std | Epoch: [0][50/564] | Time 2.065 (2.932) | Data 0.089 (0.481) | Loss 1.2419 (1.6415) | acc 0.618 (0.525) | IoU 0.314 (0.267) | [3 days, 8:10:42]
Lr: 1.082e-03 | Update: 8.822e-04 mean,1.949e-03 std | Epoch: [0][60/564] | Time 2.052 (2.884) | Data 0.076 (0.502) | Loss 1.1353 (1.5668) | acc 0.694 (0.547) | IoU 0.353 (0.278) | [3 days, 7:30:13]
Lr: 1.259e-03 | Update: 1.966e-03 mean,4.621e-03 std | Epoch: [0][70/564] | Time 2.164 (2.868) | Data 0.086 (0.523) | Loss 1.0365 (1.5015) | acc 0.745 (0.573) | IoU 0.384 (0.292) | [3 days, 7:36:59]
Lr: 1.436e-03 | Update: 1.700e-03 mean,4.092e-03 std | Epoch: [0][80/564] | Time 2.164 (2.819) | Data 0.085 (0.499) | Loss 1.0809 (1.4473) | acc 0.748 (0.596) | IoU 0.387 (0.304) | [3 days, 5:54:46]
Lr: 1.613e-03 | Update: 1.201e-03 mean,2.953e-03 std | Epoch: [0][90/564] | Time 2.282 (2.759) | Data 0.085 (0.455) | Loss 0.9169 (1.3977) | acc 0.831 (0.618) | IoU 0.428 (0.316) | [3 days, 3:27:07]
Lr: 1.791e-03 | Update: 2.153e-03 mean,5.089e-03 std | Epoch: [0][100/564] | Time 2.216 (2.731) | Data 0.082 (0.446) | Loss 0.9267 (1.3535) | acc 0.840 (0.639) | IoU 0.432 (0.327) | [3 days, 2:33:50]
Lr: 1.968e-03 | Update: 2.456e-03 mean,6.732e-03 std | Epoch: [0][110/564] | Time 2.460 (2.710) | Data 0.102 (0.435) | Loss 1.1077 (1.3181) | acc 0.741 (0.656) | IoU 0.382 (0.336) | [3 days, 1:49:05]
Lr: 2.145e-03 | Update: 1.373e-03 mean,2.921e-03 std | Epoch: [0][120/564] | Time 2.064 (2.686) | Data 0.073 (0.425) | Loss 0.9094 (1.2877) | acc 0.752 (0.664) | IoU 0.407 (0.341) | [3 days, 0:58:56]
Lr: 2.323e-03 | Update: 1.989e-03 mean,4.530e-03 std | Epoch: [0][130/564] | Time 2.143 (2.649) | Data 0.086 (0.400) | Loss 0.8917 (1.2582) | acc 0.909 (0.676) | IoU 0.470 (0.347) | [2 days, 23:32:21]
Lr: 2.500e-03 | Update: 9.505e-04 mean,2.062e-03 std | Epoch: [0][140/564] | Time 2.309 (2.649) | Data 0.079 (0.405) | Loss 0.8591 (1.2347) | acc 0.807 (0.687) | IoU 0.411 (0.353) | [2 days, 23:39:18]
Lr: 2.677e-03 | Update: 6.679e-04 mean,1.608e-03 std | Epoch: [0][150/564] | Time 2.249 (2.649) | Data 0.108 (0.408) | Loss 0.8893 (1.2146) | acc 0.722 (0.696) | IoU 0.378 (0.359) | [2 days, 23:41:58]
Lr: 2.855e-03 | Update: 1.439e-03 mean,3.152e-03 std | Epoch: [0][160/564] | Time 2.214 (2.660) | Data 0.095 (0.427) | Loss 0.8394 (1.1945) | acc 0.858 (0.702) | IoU 0.446 (0.362) | [3 days, 0:24:30]
Lr: 3.032e-03 | Update: 1.132e-03 mean,2.688e-03 std | Epoch: [0][170/564] | Time 2.255 (2.637) | Data 0.091 (0.409) | Loss 0.8871 (1.1771) | acc 0.822 (0.710) | IoU 0.433 (0.366) | [2 days, 23:25:10]
Lr: 3.209e-03 | Update: 1.026e-03 mean,2.266e-03 std | Epoch: [0][180/564] | Time 2.114 (2.635) | Data 0.080 (0.410) | Loss 0.8078 (1.1587) | acc 0.881 (0.720) | IoU 0.453 (0.372) | [2 days, 23:24:15]
Lr: 3.387e-03 | Update: 1.523e-03 mean,3.854e-03 std | Epoch: [0][190/564] | Time 2.088 (2.619) | Data 0.081 (0.396) | Loss 0.8563 (1.1420) | acc 0.843 (0.728) | IoU 0.435 (0.377) | [2 days, 22:41:19]
Lr: 3.564e-03 | Update: 1.542e-03 mean,3.290e-03 std | Epoch: [0][200/564] | Time 2.272 (2.608) | Data 0.084 (0.385) | Loss 0.9149 (1.1314) | acc 0.755 (0.736) | IoU 0.385 (0.381) | [2 days, 22:10:41]
Lr: 3.741e-03 | Update: 6.770e-04 mean,1.423e-03 std | Epoch: [0][210/564] | Time 2.240 (2.596) | Data 0.086 (0.381) | Loss 0.8294 (1.1216) | acc 0.857 (0.738) | IoU 0.440 (0.382) | [2 days, 21:46:33]
Lr: 3.918e-03 | Update: 1.067e-03 mean,2.263e-03 std | Epoch: [0][220/564] | Time 2.149 (2.599) | Data 0.095 (0.388) | Loss 0.8311 (1.1085) | acc 0.846 (0.746) | IoU 0.431 (0.387) | [2 days, 22:00:12]
Lr: 4.096e-03 | Update: 1.733e-03 mean,3.930e-03 std | Epoch: [0][230/564] | Time 2.183 (2.592) | Data 0.088 (0.384) | Loss 0.8637 (1.0968) | acc 0.864 (0.751) | IoU 0.448 (0.389) | [2 days, 21:44:29] |
My output log has some difference with you. Maybe the problem is that.
|
Yeah, I also have this warning, but I don't think it matters. I deleted these lines for cleanliness. |
I just run 3 hours. But the loss is always Nan. |
Thanks, I need to confirm whether the loss of the first 4 epochs is correct? |
I just find the in_vol is full with 0. Maybe the problem is raised, because the data read have error.
|
My don't generate the visualization of residual images in server. But I generate the visualization of residual images in my coumupter, it's normal. |
Hi, waiting for a long time, I trained 4 epochs here, and no output logSequences folder exists! Using sequences from /home1/xxxx/Repo/MotionSeg3D/data/sequences
parsing seq 08
There are 4071 frames in total.
Using 4071 scans from sequences [8]
Loss weights from content: tensor([ 0.0000, 1.0210, 296.4371])
Channel of range image input = 5
Number of residual images input = 8
"https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate", UserWarning)
Ignoring class 0 in IoU evaluation
[IOU EVAL] IGNORE: tensor([0])
[IOU EVAL] INCLUDE: tensor([1, 2])
/home1/xxxx/anaconda3/envs/mos3d/lib/python3.7/site-packages/torch/nn/parallel/_functions.py:64: UserWarning: Was asked to gather along dimension 0, but all input tensors were scalars; will instead unsqueeze and return a vector.
warnings.warn('Was asked to gather along dimension 0, but all '
Lr: 9.551e-06 | Update: 1.579e-01 mean,3.646e-01 std | Epoch: [0][0/1047] | Time 12.647 (12.647) | Data 1.301 (1.301) | Loss 1.9132 (1.9132) | acc 0.503 (0.503) | IoU 0.261 (0.261) | [25 days, 8:28:35]
Lr: 1.051e-04 | Update: 1.625e-02 mean,4.200e-02 std | Epoch: [0][10/1047] | Time 2.750 (3.430) | Data 1.667 (1.417) | Loss 1.9071 (1.9316) | acc 0.531 (0.517) | IoU 0.270 (0.261) | [8 days, 19:25:03]
Lr: 2.006e-04 | Update: 5.366e-03 mean,1.278e-02 std | Epoch: [0][20/1047] | Time 2.015 (2.849) | Data 0.944 (1.286) | Loss 1.7890 (1.8875) | acc 0.624 (0.545) | IoU 0.317 (0.275) | [7 days, 12:22:01]
Lr: 2.961e-04 | Update: 3.678e-03 mean,8.984e-03 std | Epoch: [0][30/1047] | Time 2.373 (2.719) | Data 1.314 (1.341) | Loss 1.5860 (1.8333) | acc 0.703 (0.579) | IoU 0.355 (0.293) | [7 days, 9:02:51]
Lr: 3.916e-04 | Update: 2.311e-03 mean,5.385e-03 std | Epoch: [0][40/1047] | Time 2.581 (2.629) | Data 1.406 (1.310) | Loss 1.5813 (1.7658) | acc 0.687 (0.604) | IoU 0.345 (0.306) | [7 days, 3:49:10]
Lr: 4.871e-04 | Update: 1.333e-03 mean,3.043e-03 std | Epoch: [0][50/1047] | Time 2.354 (2.588) | Data 1.326 (1.304) | Loss 1.3176 (1.7056) | acc 0.734 (0.629) | IoU 0.376 (0.319) | [7 days, 1:44:31]
Lr: 5.826e-04 | Update: 1.689e-03 mean,4.035e-03 std | Epoch: [0][60/1047] | Time 2.331 (2.568) | Data 1.300 (1.320) | Loss 1.2942 (1.6491) | acc 0.697 (0.650) | IoU 0.355 (0.331) | [7 days, 1:32:38]
Lr: 6.781e-04 | Update: 1.268e-03 mean,2.949e-03 std | Epoch: [0][70/1047] | Time 2.278 (2.559) | Data 1.205 (1.325) | Loss 1.1285 (1.5918) | acc 0.876 (0.672) | IoU 0.481 (0.343) | [7 days, 1:23:16]
Lr: 7.736e-04 | Update: 8.686e-04 mean,1.962e-03 std | Epoch: [0][80/1047] | Time 2.927 (2.552) | Data 1.840 (1.339) | Loss 1.0479 (1.5344) | acc 0.840 (0.690) | IoU 0.424 (0.353) | [7 days, 1:39:24]
Lr: 8.691e-04 | Update: 1.198e-03 mean,2.806e-03 std | Epoch: [0][90/1047] | Time 2.352 (2.552) | Data 1.300 (1.354) | Loss 1.0332 (1.4817) | acc 0.794 (0.711) | IoU 0.406 (0.364) | [7 days, 2:18:49]
Lr: 9.647e-04 | Update: 8.290e-04 mean,1.899e-03 std | Epoch: [0][100/1047] | Time 2.344 (2.549) | Data 1.133 (1.360) | Loss 0.9701 (1.4306) | acc 0.860 (0.722) | IoU 0.454 (0.370) | [7 days, 2:24:19]
Lr: 1.060e-03 | Update: 9.992e-04 mean,2.213e-03 std | Epoch: [0][110/1047] | Time 2.461 (2.543) | Data 1.489 (1.360) | Loss 0.9070 (1.3859) | acc 0.852 (0.736) | IoU 0.447 (0.378) | [7 days, 2:09:17]
Lr: 1.156e-03 | Update: 7.116e-04 mean,1.664e-03 std | Epoch: [0][120/1047] | Time 2.225 (2.530) | Data 1.039 (1.343) | Loss 0.8492 (1.3452) | acc 0.894 (0.747) | IoU 0.485 (0.384) | [7 days, 0:48:36]
Lr: 1.251e-03 | Update: 1.089e-03 mean,2.731e-03 std | Epoch: [0][130/1047] | Time 2.437 (2.525) | Data 1.333 (1.339) | Loss 0.7845 (1.3100) | acc 0.885 (0.757) | IoU 0.465 (0.390) | [7 days, 0:23:48]
Lr: 1.347e-03 | Update: 1.280e-03 mean,3.044e-03 std | Epoch: [0][140/1047] | Time 2.684 (2.526) | Data 1.554 (1.344) | Loss 0.6662 (1.2746) | acc 0.941 (0.770) | IoU 0.488 (0.396) | [7 days, 0:40:42]
Lr: 1.442e-03 | Update: 5.753e-04 mean,1.273e-03 std | Epoch: [0][150/1047] | Time 2.673 (2.528) | Data 1.515 (1.351) | Loss 0.7347 (1.2447) | acc 0.894 (0.779) | IoU 0.473 (0.401) | [7 days, 1:03:58]
Lr: 1.538e-03 | Update: 1.711e-03 mean,4.238e-03 std | Epoch: [0][160/1047] | Time 2.182 (2.525) | Data 1.159 (1.353) | Loss 0.7408 (1.2163) | acc 0.929 (0.785) | IoU 0.474 (0.405) | [7 days, 1:00:21]
Lr: 1.633e-03 | Update: 1.667e-03 mean,3.765e-03 std | Epoch: [0][170/1047] | Time 2.383 (2.527) | Data 1.331 (1.360) | Loss 0.8254 (1.1950) | acc 0.862 (0.791) | IoU 0.434 (0.408) | [7 days, 1:21:42]
Lr: 1.729e-03 | Update: 6.654e-04 mean,1.433e-03 std | Epoch: [0][180/1047] | Time 2.767 (2.523) | Data 1.534 (1.360) | Loss 0.8085 (1.1774) | acc 0.845 (0.798) | IoU 0.458 (0.412) | [7 days, 1:12:08]
Lr: 1.824e-03 | Update: 8.009e-04 mean,1.794e-03 std | Epoch: [0][190/1047] | Time 2.275 (2.519) | Data 1.056 (1.355) | Loss 0.6827 (1.1555) | acc 0.996 (0.803) | IoU 0.526 (0.416) | [7 days, 0:45:59]
Lr: 1.920e-03 | Update: 2.597e-03 mean,5.816e-03 std | Epoch: [0][200/1047] | Time 2.424 (2.513) | Data 1.224 (1.349) | Loss 1.2700 (1.1395) | acc 0.925 (0.808) | IoU 0.523 (0.419) | [7 days, 0:16:33]
Lr: 2.015e-03 | Update: 5.836e-04 mean,1.235e-03 std | Epoch: [0][210/1047] | Time 2.691 (2.511) | Data 1.645 (1.352) | Loss 0.7207 (1.1247) | acc 0.873 (0.812) | IoU 0.444 (0.421) | [7 days, 0:17:34]
Lr: 2.111e-03 | Update: 1.918e-03 mean,4.756e-03 std | Epoch: [0][220/1047] | Time 2.726 (2.512) | Data 1.570 (1.354) | Loss 0.7615 (1.1113) | acc 0.874 (0.816) | IoU 0.446 (0.423) | [7 days, 0:25:49]
Lr: 2.206e-03 | Update: 1.322e-03 mean,3.124e-03 std | Epoch: [0][230/1047] | Time 2.476 (2.508) | Data 1.243 (1.352) | Loss 0.7561 (1.1010) | acc 0.929 (0.821) | IoU 0.472 (0.426) | [7 days, 0:10:27]
Lr: 2.302e-03 | Update: 1.535e-03 mean,3.500e-03 std | Epoch: [0][240/1047] | Time 2.670 (2.505) | Data 1.289 (1.346) | Loss 0.8113 (1.0902) | acc 0.894 (0.823) | IoU 0.452 (0.428) | [6 days, 23:44:34]
Lr: 2.397e-03 | Update: 2.856e-03 mean,6.554e-03 std | Epoch: [0][250/1047] | Time 2.240 (2.499) | Data 1.212 (1.343) | Loss 1.0410 (1.0808) | acc 0.815 (0.827) | IoU 0.424 (0.430) | [6 days, 23:21:14]
Lr: 2.493e-03 | Update: 7.094e-04 mean,1.485e-03 std | Epoch: [0][260/1047] | Time 2.647 (2.502) | Data 1.476 (1.346) | Loss 0.7701 (1.0721) | acc 0.975 (0.830) | IoU 0.518 (0.432) | [6 days, 23:37:21]
Lr: 2.588e-03 | Update: 1.118e-03 mean,2.737e-03 std | Epoch: [0][270/1047] | Time 2.134 (2.497) | Data 1.070 (1.339) | Loss 0.7353 (1.0603) | acc 0.916 (0.833) | IoU 0.470 (0.434) | [6 days, 23:04:37]
Lr: 2.684e-03 | Update: 1.065e-03 mean,2.424e-03 std | Epoch: [0][280/1047] | Time 2.310 (2.495) | Data 1.222 (1.338) | Loss 0.6982 (1.0513) | acc 0.946 (0.836) | IoU 0.523 (0.436) | [6 days, 22:54:31]
Lr: 2.779e-03 | Update: 8.265e-04 mean,1.761e-03 std | Epoch: [0][290/1047] | Time 2.697 (2.495) | Data 1.620 (1.341) | Loss 0.7314 (1.0423) | acc 0.903 (0.839) | IoU 0.470 (0.438) | [6 days, 23:01:24]
Lr: 2.875e-03 | Update: 2.241e-03 mean,4.692e-03 std | Epoch: [0][300/1047] | Time 2.080 (2.486) | Data 1.049 (1.334) | Loss 1.1129 (1.0350) | acc 0.967 (0.841) | IoU 0.503 (0.439) | [6 days, 22:19:54]
Lr: 2.970e-03 | Update: 7.071e-04 mean,1.441e-03 std | Epoch: [0][310/1047] | Time 2.816 (2.489) | Data 1.703 (1.336) | Loss 0.7379 (1.0282) | acc 0.902 (0.844) | IoU 0.458 (0.440) | [6 days, 22:32:46]
Lr: 3.066e-03 | Update: 1.630e-03 mean,3.690e-03 std | Epoch: [0][320/1047] | Time 2.144 (2.492) | Data 1.018 (1.339) | Loss 0.8597 (1.0210) | acc 0.826 (0.846) | IoU 0.423 (0.442) | [6 days, 22:44:51]
Lr: 3.161e-03 | Update: 1.472e-03 mean,3.088e-03 std | Epoch: [0][330/1047] | Time 2.465 (2.494) | Data 1.317 (1.341) | Loss 0.8644 (1.0154) | acc 0.924 (0.848) | IoU 0.526 (0.443) | [6 days, 22:58:11]
Lr: 3.257e-03 | Update: 1.005e-03 mean,2.851e-03 std | Epoch: [0][340/1047] | Time 2.831 (2.500) | Data 1.651 (1.347) | Loss 0.6173 (1.0065) | acc 0.937 (0.850) | IoU 0.498 (0.444) | [6 days, 23:29:32]
Lr: 3.352e-03 | Update: 7.584e-04 mean,1.554e-03 std | Epoch: [0][350/1047] | Time 2.417 (2.501) | Data 1.270 (1.347) | Loss 0.6959 (0.9999) | acc 0.904 (0.852) | IoU 0.473 (0.445) | [6 days, 23:28:05]
Lr: 3.448e-03 | Update: 9.897e-04 mean,2.158e-03 std | Epoch: [0][360/1047] | Time 2.639 (2.504) | Data 1.551 (1.350) | Loss 0.8042 (0.9960) | acc 0.865 (0.854) | IoU 0.439 (0.447) | [6 days, 23:45:33]
Lr: 3.543e-03 | Update: 1.748e-03 mean,4.505e-03 std | Epoch: [0][370/1047] | Time 1.926 (2.503) | Data 0.887 (1.350) | Loss 0.7487 (0.9888) | acc 0.927 (0.855) | IoU 0.474 (0.447) | [6 days, 23:40:38]
Lr: 3.639e-03 | Update: 1.938e-03 mean,4.059e-03 std | Epoch: [0][380/1047] | Time 2.537 (2.505) | Data 1.311 (1.351) | Loss 0.8351 (0.9838) | acc 0.879 (0.857) | IoU 0.479 (0.448) | [6 days, 23:48:32]
Lr: 3.734e-03 | Update: 5.555e-03 mean,1.380e-02 std | Epoch: [0][390/1047] | Time 2.743 (2.508) | Data 1.656 (1.354) | Loss 1.1202 (0.9799) | acc 0.916 (0.858) | IoU 0.486 (0.449) | [7 days, 0:03:23]
Lr: 3.830e-03 | Update: 1.649e-03 mean,4.768e-03 std | Epoch: [0][400/1047] | Time 2.657 (2.511) | Data 1.373 (1.358) | Loss 0.6852 (0.9746) | acc 0.950 (0.859) | IoU 0.483 (0.450) | [7 days, 0:22:25]
Lr: 3.926e-03 | Update: 3.202e-03 mean,8.860e-03 std | Epoch: [0][410/1047] | Time 2.643 (2.516) | Data 1.527 (1.363) | Loss 0.8996 (0.9747) | acc 0.859 (0.860) | IoU 0.432 (0.451) | [7 days, 0:46:14]
Lr: 4.021e-03 | Update: 9.669e-04 mean,1.989e-03 std | Epoch: [0][420/1047] | Time 2.615 (2.520) | Data 1.337 (1.366) | Loss 0.8768 (0.9727) | acc 0.883 (0.861) | IoU 0.463 (0.451) | [7 days, 1:05:07]
Lr: 4.117e-03 | Update: 1.969e-03 mean,4.417e-03 std | Epoch: [0][430/1047] | Time 2.724 (2.524) | Data 1.584 (1.370) | Loss 0.7839 (0.9700) | acc 0.960 (0.862) | IoU 0.589 (0.452) | [7 days, 1:22:42]
Lr: 4.212e-03 | Update: 1.953e-03 mean,3.675e-03 std | Epoch: [0][440/1047] | Time 2.528 (2.528) | Data 1.344 (1.373) | Loss 1.2602 (0.9667) | acc 0.918 (0.864) | IoU 0.470 (0.453) | [7 days, 1:40:26]
Lr: 4.308e-03 | Update: 2.655e-03 mean,1.010e-02 std | Epoch: [0][450/1047] | Time 2.430 (2.530) | Data 1.303 (1.375) | Loss 0.8391 (0.9637) | acc 0.996 (0.864) | IoU 0.515 (0.453) | [7 days, 1:53:47]
Lr: 4.403e-03 | Update: 1.135e-03 mean,2.366e-03 std | Epoch: [0][460/1047] | Time 2.772 (2.532) | Data 1.563 (1.377) | Loss 0.8759 (0.9599) | acc 0.935 (0.865) | IoU 0.483 (0.454) | [7 days, 2:01:57]
Lr: 4.499e-03 | Update: 1.648e-03 mean,3.519e-03 std | Epoch: [0][470/1047] | Time 2.034 (2.533) | Data 0.878 (1.377) | Loss 0.7658 (0.9558) | acc 0.925 (0.866) | IoU 0.474 (0.455) | [7 days, 2:02:54]
Lr: 4.594e-03 | Update: 5.714e-04 mean,1.138e-03 std | Epoch: [0][480/1047] | Time 2.334 (2.535) | Data 1.311 (1.379) | Loss 0.6352 (0.9527) | acc 0.880 (0.867) | IoU 0.445 (0.455) | [7 days, 2:15:22]
Lr: 4.690e-03 | Update: 5.623e-04 mean,1.094e-03 std | Epoch: [0][490/1047] | Time 2.745 (2.536) | Data 1.571 (1.380) | Loss 0.7400 (0.9498) | acc 0.855 (0.868) | IoU 0.433 (0.456) | [7 days, 2:17:59]
Lr: 4.785e-03 | Update: 9.261e-04 mean,1.800e-03 std | Epoch: [0][500/1047] | Time 2.464 (2.545) | Data 1.305 (1.389) | Loss 0.7770 (0.9467) | acc 0.914 (0.869) | IoU 0.479 (0.457) | [7 days, 3:05:10]
Lr: 4.881e-03 | Update: 1.127e-03 mean,2.135e-03 std | Epoch: [0][510/1047] | Time 2.559 (2.544) | Data 1.477 (1.389) | Loss 0.7733 (0.9435) | acc 0.918 (0.870) | IoU 0.468 (0.457) | [7 days, 3:02:18]
Lr: 4.976e-03 | Update: 9.463e-04 mean,2.094e-03 std | Epoch: [0][520/1047] | Time 2.665 (2.544) | Data 1.597 (1.391) | Loss 0.7514 (0.9412) | acc 0.934 (0.871) | IoU 0.483 (0.458) | [7 days, 3:05:02]
Lr: 5.072e-03 | Update: 6.239e-04 mean,1.230e-03 std | Epoch: [0][530/1047] | Time 2.713 (2.544) | Data 1.510 (1.392) | Loss 0.6412 (0.9358) | acc 0.979 (0.873) | IoU 0.578 (0.460) | [7 days, 3:08:33]
Lr: 5.167e-03 | Update: 1.812e-03 mean,3.781e-03 std | Epoch: [0][540/1047] | Time 2.457 (2.543) | Data 1.411 (1.392) | Loss 0.7798 (0.9315) | acc 0.908 (0.875) | IoU 0.478 (0.461) | [7 days, 3:04:31]
Lr: 5.263e-03 | Update: 6.219e-04 mean,1.292e-03 std | Epoch: [0][550/1047] | Time 2.201 (2.541) | Data 0.919 (1.392) | Loss 0.5778 (0.9270) | acc 0.964 (0.875) | IoU 0.585 (0.462) | [7 days, 2:59:49]
Lr: 5.358e-03 | Update: 2.284e-03 mean,4.718e-03 std | Epoch: [0][560/1047] | Time 2.921 (2.544) | Data 1.785 (1.395) | Loss 1.2335 (0.9233) | acc 0.982 (0.877) | IoU 0.594 (0.463) | [7 days, 3:12:30]
Lr: 5.454e-03 | Update: 1.555e-03 mean,3.969e-03 std | Epoch: [0][570/1047] | Time 2.355 (2.543) | Data 1.223 (1.395) | Loss 0.7468 (0.9196) | acc 0.943 (0.877) | IoU 0.520 (0.463) | [7 days, 3:09:46]
Lr: 5.549e-03 | Update: 4.145e-04 mean,7.546e-04 std | Epoch: [0][580/1047] | Time 2.626 (2.542) | Data 1.511 (1.395) | Loss 0.6135 (0.9162) | acc 0.936 (0.879) | IoU 0.483 (0.464) | [7 days, 3:08:01]
Lr: 5.645e-03 | Update: 6.645e-04 mean,1.345e-03 std | Epoch: [0][590/1047] | Time 2.785 (2.539) | Data 1.661 (1.394) | Loss 0.8057 (0.9163) | acc 0.814 (0.878) | IoU 0.410 (0.464) | [7 days, 2:57:30]
Lr: 5.740e-03 | Update: 8.223e-04 mean,1.517e-03 std | Epoch: [0][600/1047] | Time 2.347 (2.539) | Data 1.221 (1.395) | Loss 0.7623 (0.9141) | acc 0.912 (0.879) | IoU 0.462 (0.464) | [7 days, 2:59:36]
Lr: 5.836e-03 | Update: 4.141e-04 mean,8.162e-04 std | Epoch: [0][610/1047] | Time 2.408 (2.539) | Data 1.341 (1.396) | Loss 0.6397 (0.9103) | acc 0.971 (0.880) | IoU 0.544 (0.466) | [7 days, 3:00:07]
Lr: 5.931e-03 | Update: 6.788e-04 mean,1.265e-03 std | Epoch: [0][620/1047] | Time 2.557 (2.538) | Data 1.481 (1.397) | Loss 0.6688 (0.9083) | acc 0.956 (0.881) | IoU 0.501 (0.466) | [7 days, 2:58:59]
Lr: 6.027e-03 | Update: 1.531e-03 mean,3.549e-03 std | Epoch: [0][630/1047] | Time 2.335 (2.537) | Data 1.278 (1.396) | Loss 0.7941 (0.9060) | acc 0.889 (0.882) | IoU 0.493 (0.467) | [7 days, 2:54:15]
Lr: 6.122e-03 | Update: 1.401e-03 mean,2.835e-03 std | Epoch: [0][640/1047] | Time 2.279 (2.537) | Data 1.138 (1.396) | Loss 0.7996 (0.9050) | acc 0.990 (0.882) | IoU 0.612 (0.467) | [7 days, 2:52:54]
Lr: 6.218e-03 | Update: 3.342e-04 mean,6.851e-04 std | Epoch: [0][650/1047] | Time 2.338 (2.536) | Data 1.291 (1.396) | Loss 0.6704 (0.9028) | acc 0.919 (0.883) | IoU 0.470 (0.468) | [7 days, 2:48:42]
Lr: 6.313e-03 | Update: 9.230e-04 mean,2.055e-03 std | Epoch: [0][660/1047] | Time 1.989 (2.534) | Data 0.914 (1.394) | Loss 0.6238 (0.8998) | acc 0.998 (0.884) | IoU 0.695 (0.469) | [7 days, 2:38:58]
Lr: 6.409e-03 | Update: 1.361e-03 mean,2.987e-03 std | Epoch: [0][670/1047] | Time 2.269 (2.533) | Data 1.312 (1.394) | Loss 0.7666 (0.8969) | acc 0.934 (0.885) | IoU 0.493 (0.470) | [7 days, 2:35:30]
Lr: 6.504e-03 | Update: 6.876e-04 mean,1.506e-03 std | Epoch: [0][680/1047] | Time 2.780 (2.532) | Data 1.701 (1.395) | Loss 0.6020 (0.8936) | acc 0.913 (0.886) | IoU 0.475 (0.470) | [7 days, 2:35:49]
Lr: 6.600e-03 | Update: 8.734e-04 mean,1.623e-03 std | Epoch: [0][690/1047] | Time 2.647 (2.531) | Data 1.510 (1.394) | Loss 0.6495 (0.8917) | acc 0.905 (0.887) | IoU 0.471 (0.470) | [7 days, 2:29:06]
Lr: 6.695e-03 | Update: 6.435e-04 mean,1.537e-03 std | Epoch: [0][700/1047] | Time 2.386 (2.529) | Data 1.299 (1.393) | Loss 0.5610 (0.8883) | acc 0.997 (0.888) | IoU 0.693 (0.471) | [7 days, 2:20:02]
Lr: 6.791e-03 | Update: 1.886e-03 mean,3.829e-03 std | Epoch: [0][710/1047] | Time 2.497 (2.528) | Data 1.427 (1.392) | Loss 0.7742 (0.8858) | acc 0.932 (0.888) | IoU 0.472 (0.472) | [7 days, 2:14:30]
Lr: 6.886e-03 | Update: 9.669e-04 mean,1.753e-03 std | Epoch: [0][720/1047] | Time 2.476 (2.525) | Data 1.410 (1.389) | Loss 0.7748 (0.8839) | acc 0.929 (0.889) | IoU 0.483 (0.473) | [7 days, 1:58:02]
Lr: 6.982e-03 | Update: 1.690e-03 mean,3.547e-03 std | Epoch: [0][730/1047] | Time 2.569 (2.526) | Data 1.297 (1.389) | Loss 1.1382 (0.8822) | acc 0.987 (0.890) | IoU 0.630 (0.473) | [7 days, 1:59:14]
Lr: 7.077e-03 | Update: 1.390e-03 mean,2.881e-03 std | Epoch: [0][740/1047] | Time 2.743 (2.524) | Data 1.659 (1.386) | Loss 0.8406 (0.8806) | acc 0.899 (0.890) | IoU 0.481 (0.473) | [7 days, 1:46:09]
Lr: 7.173e-03 | Update: 1.045e-03 mean,1.934e-03 std | Epoch: [0][750/1047] | Time 2.384 (2.524) | Data 1.194 (1.387) | Loss 0.7398 (0.8788) | acc 0.990 (0.891) | IoU 0.666 (0.474) | [7 days, 1:48:34]
Lr: 7.268e-03 | Update: 5.514e-04 mean,9.696e-04 std | Epoch: [0][760/1047] | Time 2.420 (2.523) | Data 1.256 (1.385) | Loss 0.7007 (0.8769) | acc 0.897 (0.891) | IoU 0.464 (0.474) | [7 days, 1:41:37]
Lr: 7.364e-03 | Update: 6.106e-04 mean,1.214e-03 std | Epoch: [0][770/1047] | Time 2.536 (2.523) | Data 1.447 (1.385) | Loss 0.6077 (0.8740) | acc 0.992 (0.892) | IoU 0.665 (0.475) | [7 days, 1:39:00]
Lr: 7.459e-03 | Update: 9.396e-04 mean,1.622e-03 std | Epoch: [0][780/1047] | Time 2.343 (2.523) | Data 1.278 (1.385) | Loss 0.8258 (0.8722) | acc 0.965 (0.893) | IoU 0.494 (0.476) | [7 days, 1:38:59]
Lr: 7.555e-03 | Update: 4.524e-04 mean,9.995e-04 std | Epoch: [0][790/1047] | Time 2.314 (2.523) | Data 1.089 (1.386) | Loss 0.7351 (0.8713) | acc 0.838 (0.893) | IoU 0.444 (0.476) | [7 days, 1:40:14]
Lr: 7.650e-03 | Update: 5.381e-04 mean,9.517e-04 std | Epoch: [0][800/1047] | Time 2.540 (2.522) | Data 1.354 (1.384) | Loss 0.7208 (0.8704) | acc 0.887 (0.893) | IoU 0.455 (0.476) | [7 days, 1:31:44]
Lr: 7.746e-03 | Update: 4.082e-04 mean,7.186e-04 std | Epoch: [0][810/1047] | Time 2.039 (2.521) | Data 0.807 (1.383) | Loss 0.6611 (0.8690) | acc 0.960 (0.894) | IoU 0.506 (0.476) | [7 days, 1:25:55]
Lr: 7.841e-03 | Update: 4.009e-04 mean,6.378e-04 std | Epoch: [0][820/1047] | Time 2.429 (2.520) | Data 1.299 (1.381) | Loss 0.6614 (0.8671) | acc 0.954 (0.894) | IoU 0.530 (0.477) | [7 days, 1:18:01]
Lr: 7.937e-03 | Update: 6.184e-04 mean,1.092e-03 std | Epoch: [0][830/1047] | Time 2.495 (2.519) | Data 1.510 (1.380) | Loss 0.8044 (0.8662) | acc 0.907 (0.895) | IoU 0.494 (0.477) | [7 days, 1:10:18]
Lr: 8.032e-03 | Update: 3.739e-04 mean,6.361e-04 std | Epoch: [0][840/1047] | Time 2.118 (2.517) | Data 0.999 (1.378) | Loss 0.6879 (0.8641) | acc 0.984 (0.895) | IoU 0.549 (0.477) | [7 days, 1:00:42]
Lr: 8.128e-03 | Update: 2.605e-04 mean,6.422e-04 std | Epoch: [0][850/1047] | Time 2.493 (2.517) | Data 1.276 (1.378) | Loss 0.5741 (0.8615) | acc 0.950 (0.896) | IoU 0.482 (0.478) | [7 days, 0:58:47]
Lr: 8.223e-03 | Update: 3.486e-04 mean,6.885e-04 std | Epoch: [0][860/1047] | Time 2.359 (2.515) | Data 1.047 (1.376) | Loss 0.6499 (0.8610) | acc 0.859 (0.897) | IoU 0.457 (0.478) | [7 days, 0:49:11]
Lr: 8.319e-03 | Update: 2.398e-03 mean,4.698e-03 std | Epoch: [0][870/1047] | Time 2.359 (2.514) | Data 1.248 (1.375) | Loss 0.8596 (0.8603) | acc 0.912 (0.897) | IoU 0.466 (0.478) | [7 days, 0:44:18]
Lr: 8.415e-03 | Update: 6.602e-04 mean,1.329e-03 std | Epoch: [0][880/1047] | Time 2.502 (2.514) | Data 1.309 (1.374) | Loss 0.7988 (0.8591) | acc 0.874 (0.897) | IoU 0.446 (0.478) | [7 days, 0:41:43]
Lr: 8.510e-03 | Update: 5.196e-04 mean,9.264e-04 std | Epoch: [0][890/1047] | Time 2.280 (2.514) | Data 1.226 (1.374) | Loss 0.5362 (0.8571) | acc 0.994 (0.898) | IoU 0.662 (0.479) | [7 days, 0:38:04]
Lr: 8.606e-03 | Update: 1.692e-03 mean,3.439e-03 std | Epoch: [0][900/1047] | Time 2.888 (2.515) | Data 1.602 (1.375) | Loss 0.6705 (0.8547) | acc 0.977 (0.898) | IoU 0.624 (0.480) | [7 days, 0:42:42]
Lr: 8.701e-03 | Update: 4.740e-04 mean,8.510e-04 std | Epoch: [0][910/1047] | Time 2.303 (2.515) | Data 1.167 (1.374) | Loss 0.6010 (0.8526) | acc 0.939 (0.899) | IoU 0.495 (0.480) | [7 days, 0:41:24]
Lr: 8.797e-03 | Update: 9.422e-04 mean,1.727e-03 std | Epoch: [0][920/1047] | Time 2.289 (2.513) | Data 1.006 (1.372) | Loss 0.7965 (0.8508) | acc 0.989 (0.899) | IoU 0.670 (0.481) | [7 days, 0:31:07]
Lr: 8.892e-03 | Update: 3.877e-04 mean,6.446e-04 std | Epoch: [0][930/1047] | Time 2.231 (2.513) | Data 1.077 (1.372) | Loss 0.5667 (0.8487) | acc 0.927 (0.900) | IoU 0.472 (0.481) | [7 days, 0:28:01]
Lr: 8.988e-03 | Update: 5.974e-04 mean,1.021e-03 std | Epoch: [0][940/1047] | Time 2.318 (2.511) | Data 1.166 (1.370) | Loss 0.6684 (0.8479) | acc 0.932 (0.900) | IoU 0.522 (0.481) | [7 days, 0:20:08]
Lr: 9.083e-03 | Update: 4.019e-04 mean,7.437e-04 std | Epoch: [0][950/1047] | Time 2.653 (2.511) | Data 1.550 (1.370) | Loss 0.5914 (0.8464) | acc 0.956 (0.900) | IoU 0.493 (0.482) | [7 days, 0:16:33]
Lr: 9.179e-03 | Update: 3.633e-04 mean,7.251e-04 std | Epoch: [0][960/1047] | Time 2.518 (2.512) | Data 1.453 (1.371) | Loss 0.5754 (0.8452) | acc 0.962 (0.901) | IoU 0.572 (0.482) | [7 days, 0:22:49]
Lr: 9.274e-03 | Update: 8.452e-04 mean,1.432e-03 std | Epoch: [0][970/1047] | Time 2.385 (2.511) | Data 1.347 (1.370) | Loss 0.9197 (0.8446) | acc 0.896 (0.901) | IoU 0.490 (0.482) | [7 days, 0:15:09]
Lr: 9.370e-03 | Update: 3.664e-04 mean,8.862e-04 std | Epoch: [0][980/1047] | Time 2.176 (2.511) | Data 1.030 (1.370) | Loss 0.5625 (0.8433) | acc 0.940 (0.901) | IoU 0.477 (0.482) | [7 days, 0:15:59]
Lr: 9.465e-03 | Update: 6.226e-04 mean,1.149e-03 std | Epoch: [0][990/1047] | Time 2.714 (2.511) | Data 1.617 (1.371) | Loss 0.8802 (0.8416) | acc 0.986 (0.902) | IoU 0.526 (0.483) | [7 days, 0:17:00]
Lr: 9.561e-03 | Update: 1.485e-03 mean,2.518e-03 std | Epoch: [0][1000/1047] | Time 2.563 (2.510) | Data 1.485 (1.370) | Loss 0.9931 (0.8409) | acc 0.893 (0.902) | IoU 0.475 (0.483) | [7 days, 0:11:47]
Lr: 9.656e-03 | Update: 2.691e-03 mean,4.982e-03 std | Epoch: [0][1010/1047] | Time 2.781 (2.511) | Data 1.665 (1.371) | Loss 0.9067 (0.8402) | acc 0.969 (0.903) | IoU 0.597 (0.483) | [7 days, 0:15:58]
Lr: 9.752e-03 | Update: 4.912e-04 mean,9.211e-04 std | Epoch: [0][1020/1047] | Time 2.317 (2.510) | Data 1.186 (1.370) | Loss 0.6171 (0.8390) | acc 0.962 (0.903) | IoU 0.539 (0.483) | [7 days, 0:09:40]
Lr: 9.847e-03 | Update: 1.077e-03 mean,1.846e-03 std | Epoch: [0][1030/1047] | Time 2.844 (2.509) | Data 1.730 (1.369) | Loss 0.9557 (0.8378) | acc 0.966 (0.903) | IoU 0.604 (0.484) | [7 days, 0:05:22]
Lr: 9.943e-03 | Update: 4.561e-04 mean,7.759e-04 std | Epoch: [0][1040/1047] | Time 2.756 (2.508) | Data 1.754 (1.368) | Loss 0.6414 (0.8366) | acc 0.930 (0.904) | IoU 0.486 (0.484) | [6 days, 23:57:31]
Best mean iou in training set so far, save model!
Validation:: 100%|████████████████████████████| 508/508 [20:14<00:00, 2.39s/it]
********************************************************************************
Validation set:
Time avg per batch 2.390
Loss avg 0.6212
Jaccard avg 0.3498
WCE avg 0.2714
Acc avg 0.915623
IoU avg 0.475279
IoU class 0 [unlabeled] = 0.000000
IoU class 1 [static] = 0.915363
IoU class 2 [moving] = 0.035195
********************************************************************************
Best mean iou in validation so far, save model!
********************************************************************************
Lr: 1.000e-02 | Update: 6.661e-04 mean,1.239e-03 std | Epoch: [1][0/1047] | Time 2.168 (2.507) | Data 1.165 (1.368) | Loss 0.6463 (0.6463) | acc 0.953 (0.953) | IoU 0.519 (0.519) | [9 days, 2:09:17]
Lr: 9.999e-03 | Update: 8.192e-04 mean,1.428e-03 std | Epoch: [1][10/1047] | Time 2.537 (2.504) | Data 1.236 (1.365) | Loss 0.7102 (0.6836) | acc 0.994 (0.965) | IoU 0.586 (0.528) | [9 days, 1:53:08]
Lr: 9.998e-03 | Update: 5.564e-04 mean,1.015e-03 std | Epoch: [1][20/1047] | Time 2.308 (2.500) | Data 1.216 (1.362) | Loss 0.6141 (0.6716) | acc 0.919 (0.950) | IoU 0.474 (0.529) | [9 days, 1:35:13]
Lr: 9.997e-03 | Update: 5.368e-04 mean,9.257e-04 std | Epoch: [1][30/1047] | Time 1.674 (2.497) | Data 0.665 (1.358) | Loss 0.5842 (0.6826) | acc 0.948 (0.959) | IoU 0.509 (0.547) | [9 days, 1:16:34]
Lr: 9.996e-03 | Update: 4.074e-04 mean,7.694e-04 std | Epoch: [1][40/1047] | Time 2.087 (2.494) | Data 0.930 (1.355) | Loss 0.6891 (0.6953) | acc 0.918 (0.939) | IoU 0.466 (0.527) | [9 days, 1:00:28]
Lr: 9.995e-03 | Update: 4.502e-04 mean,7.399e-04 std | Epoch: [1][50/1047] | Time 2.152 (2.491) | Data 1.097 (1.352) | Loss 0.6182 (0.6930) | acc 0.918 (0.943) | IoU 0.511 (0.526) | [9 days, 0:42:53]
Lr: 9.994e-03 | Update: 4.795e-04 mean,8.169e-04 std | Epoch: [1][60/1047] | Time 2.257 (2.488) | Data 1.172 (1.349) | Loss 0.6281 (0.6976) | acc 0.950 (0.938) | IoU 0.517 (0.519) | [9 days, 0:26:57]
Lr: 9.993e-03 | Update: 1.535e-03 mean,2.619e-03 std | Epoch: [1][70/1047] | Time 2.086 (2.485) | Data 0.973 (1.346) | Loss 0.8987 (0.6945) | acc 0.962 (0.944) | IoU 0.518 (0.526) | [9 days, 0:11:40]
Lr: 9.992e-03 | Update: 5.964e-04 mean,1.015e-03 std | Epoch: [1][80/1047] | Time 2.117 (2.481) | Data 1.142 (1.342) | Loss 0.7664 (0.6973) | acc 0.868 (0.941) | IoU 0.440 (0.523) | [8 days, 23:51:03]
Lr: 9.991e-03 | Update: 1.051e-03 mean,1.839e-03 std | Epoch: [1][90/1047] | Time 2.017 (2.479) | Data 0.772 (1.340) | Loss 0.7672 (0.6988) | acc 0.980 (0.942) | IoU 0.500 (0.521) | [8 days, 23:37:44]
Lr: 9.990e-03 | Update: 5.267e-04 mean,1.023e-03 std | Epoch: [1][100/1047] | Time 2.408 (2.476) | Data 1.182 (1.336) | Loss 0.7222 (0.7019) | acc 0.883 (0.938) | IoU 0.446 (0.518) | [8 days, 23:19:53]
Lr: 9.989e-03 | Update: 1.351e-03 mean,2.296e-03 std | Epoch: [1][110/1047] | Time 1.848 (2.472) | Data 0.760 (1.333) | Loss 0.8049 (0.7058) | acc 0.874 (0.937) | IoU 0.448 (0.517) | [8 days, 23:03:02]
Lr: 9.988e-03 | Update: 6.096e-04 mean,9.729e-04 std | Epoch: [1][120/1047] | Time 2.193 (2.469) | Data 1.010 (1.331) | Loss 0.6868 (0.7071) | acc 0.987 (0.934) | IoU 0.526 (0.514) | [8 days, 22:48:03]
Lr: 9.988e-03 | Update: 5.171e-04 mean,8.854e-04 std | Epoch: [1][130/1047] | Time 1.867 (2.467) | Data 0.753 (1.329) | Loss 0.6957 (0.7080) | acc 0.918 (0.935) | IoU 0.484 (0.516) | [8 days, 22:37:02]
Lr: 9.987e-03 | Update: 9.760e-04 mean,1.632e-03 std | Epoch: [1][140/1047] | Time 2.196 (2.465) | Data 0.879 (1.326) | Loss 0.6056 (0.7064) | acc 0.986 (0.935) | IoU 0.596 (0.516) | [8 days, 22:21:36]
Lr: 9.986e-03 | Update: 1.078e-03 mean,1.816e-03 std | Epoch: [1][150/1047] | Time 2.169 (2.462) | Data 1.053 (1.323) | Loss 0.8640 (0.7111) | acc 0.886 (0.935) | IoU 0.462 (0.515) | [8 days, 22:04:58]
Lr: 9.985e-03 | Update: 4.061e-04 mean,7.449e-04 std | Epoch: [1][160/1047] | Time 2.066 (2.459) | Data 0.758 (1.320) | Loss 0.4711 (0.7139) | acc 0.975 (0.935) | IoU 0.552 (0.515) | [8 days, 21:50:14]
Lr: 9.984e-03 | Update: 2.174e-04 mean,3.537e-04 std | Epoch: [1][170/1047] | Time 2.183 (2.456) | Data 1.117 (1.317) | Loss 0.6116 (0.7098) | acc 0.945 (0.935) | IoU 0.511 (0.515) | [8 days, 21:35:01]
Lr: 9.983e-03 | Update: 4.760e-04 mean,8.167e-04 std | Epoch: [1][180/1047] | Time 1.959 (2.454) | Data 0.705 (1.315) | Loss 0.5687 (0.7084) | acc 0.897 (0.937) | IoU 0.456 (0.516) | [8 days, 21:22:36]
Lr: 9.982e-03 | Update: 4.058e-04 mean,6.828e-04 std | Epoch: [1][190/1047] | Time 2.086 (2.451) | Data 0.977 (1.312) | Loss 0.5245 (0.7038) | acc 0.983 (0.936) | IoU 0.582 (0.515) | [8 days, 21:09:08]
Lr: 9.981e-03 | Update: 1.755e-03 mean,2.859e-03 std | Epoch: [1][200/1047] | Time 2.374 (2.449) | Data 1.250 (1.310) | Loss 0.9470 (0.7034) | acc 0.955 (0.939) | IoU 0.540 (0.519) | [8 days, 20:56:31]
Lr: 9.980e-03 | Update: 3.865e-04 mean,6.273e-04 std | Epoch: [1][210/1047] | Time 2.101 (2.446) | Data 1.063 (1.307) | Loss 0.7084 (0.7033) | acc 0.896 (0.937) | IoU 0.461 (0.517) | [8 days, 20:40:50]
Lr: 9.979e-03 | Update: 3.937e-04 mean,6.325e-04 std | Epoch: [1][220/1047] | Time 1.996 (2.444) | Data 0.778 (1.304) | Loss 0.5857 (0.7019) | acc 0.925 (0.937) | IoU 0.486 (0.517) | [8 days, 20:26:23]
Lr: 9.978e-03 | Update: 4.642e-04 mean,7.834e-04 std | Epoch: [1][230/1047] | Time 2.565 (2.441) | Data 1.431 (1.302) | Loss 0.6222 (0.7042) | acc 0.921 (0.936) | IoU 0.492 (0.517) | [8 days, 20:12:58]
Lr: 9.977e-03 | Update: 3.713e-04 mean,5.843e-04 std | Epoch: [1][240/1047] | Time 2.192 (2.439) | Data 1.070 (1.300) | Loss 0.6053 (0.7037) | acc 0.965 (0.937) | IoU 0.596 (0.518) | [8 days, 20:03:05]
Lr: 9.976e-03 | Update: 5.921e-04 mean,1.003e-03 std | Epoch: [1][250/1047] | Time 2.056 (2.437) | Data 0.889 (1.298) | Loss 0.6812 (0.7016) | acc 0.970 (0.937) | IoU 0.508 (0.517) | [8 days, 19:50:19]
Lr: 9.975e-03 | Update: 4.818e-04 mean,7.490e-04 std | Epoch: [1][260/1047] | Time 2.159 (2.435) | Data 1.138 (1.296) | Loss 0.6329 (0.6988) | acc 0.941 (0.939) | IoU 0.496 (0.521) | [8 days, 19:38:18]
Lr: 9.974e-03 | Update: 3.753e-04 mean,6.455e-04 std | Epoch: [1][270/1047] | Time 1.823 (2.432) | Data 0.696 (1.294) | Loss 0.5991 (0.6982) | acc 0.930 (0.938) | IoU 0.485 (0.519) | [8 days, 19:26:01]
Lr: 9.973e-03 | Update: 1.136e-03 mean,1.893e-03 std | Epoch: [1][280/1047] | Time 2.080 (2.431) | Data 0.907 (1.292) | Loss 1.0192 (0.6973) | acc 0.977 (0.939) | IoU 0.516 (0.520) | [8 days, 19:15:28]
Lr: 9.972e-03 | Update: 3.413e-04 mean,6.132e-04 std | Epoch: [1][290/1047] | Time 2.416 (2.429) | Data 1.319 (1.290) | Loss 0.6255 (0.6958) | acc 0.898 (0.938) | IoU 0.461 (0.519) | [8 days, 19:07:09]
Lr: 9.971e-03 | Update: 1.021e-03 mean,1.905e-03 std | Epoch: [1][300/1047] | Time 2.338 (2.427) | Data 1.260 (1.289) | Loss 0.7921 (0.6950) | acc 0.985 (0.940) | IoU 0.699 (0.521) | [8 days, 18:58:11]
Lr: 9.970e-03 | Update: 6.826e-04 mean,1.193e-03 std | Epoch: [1][310/1047] | Time 1.839 (2.425) | Data 0.680 (1.286) | Loss 1.0124 (0.6938) | acc 0.942 (0.940) | IoU 0.493 (0.521) | [8 days, 18:46:04]
Lr: 9.969e-03 | Update: 1.355e-03 mean,2.464e-03 std | Epoch: [1][320/1047] | Time 1.968 (2.424) | Data 0.805 (1.285) | Loss 0.7558 (0.6932) | acc 0.971 (0.941) | IoU 0.517 (0.521) | [8 days, 18:37:01]
Lr: 9.968e-03 | Update: 4.943e-04 mean,8.049e-04 std | Epoch: [1][330/1047] | Time 2.157 (2.423) | Data 0.962 (1.284) | Loss 0.7105 (0.6919) | acc 0.948 (0.941) | IoU 0.484 (0.522) | [8 days, 18:34:01]
Lr: 9.967e-03 | Update: 1.473e-03 mean,2.464e-03 std | Epoch: [1][340/1047] | Time 1.742 (2.421) | Data 0.696 (1.282) | Loss 0.8216 (0.6930) | acc 0.979 (0.942) | IoU 0.516 (0.523) | [8 days, 18:20:15]
Lr: 9.966e-03 | Update: 6.841e-04 mean,1.155e-03 std | Epoch: [1][350/1047] | Time 2.185 (2.419) | Data 1.062 (1.280) | Loss 0.6928 (0.6915) | acc 0.963 (0.942) | IoU 0.553 (0.523) | [8 days, 18:11:22]
Lr: 9.966e-03 | Update: 5.011e-04 mean,8.797e-04 std | Epoch: [1][360/1047] | Time 2.545 (2.418) | Data 1.501 (1.279) | Loss 0.5821 (0.6919) | acc 0.910 (0.942) | IoU 0.475 (0.523) | [8 days, 18:05:31]
Lr: 9.965e-03 | Update: 5.356e-04 mean,8.798e-04 std | Epoch: [1][370/1047] | Time 2.060 (2.417) | Data 0.963 (1.278) | Loss 0.6512 (0.6917) | acc 0.976 (0.943) | IoU 0.534 (0.524) | [8 days, 17:57:37]
Lr: 9.964e-03 | Update: 2.823e-04 mean,4.791e-04 std | Epoch: [1][380/1047] | Time 2.174 (2.415) | Data 1.043 (1.276) | Loss 0.4583 (0.6894) | acc 0.980 (0.943) | IoU 0.534 (0.525) | [8 days, 17:46:36]
Lr: 9.963e-03 | Update: 7.853e-04 mean,1.388e-03 std | Epoch: [1][390/1047] | Time 2.378 (2.413) | Data 1.347 (1.274) | Loss 0.8234 (0.6899) | acc 0.966 (0.944) | IoU 0.518 (0.525) | [8 days, 17:39:03]
Lr: 9.962e-03 | Update: 2.684e-04 mean,5.790e-04 std | Epoch: [1][400/1047] | Time 2.146 (2.412) | Data 1.112 (1.273) | Loss 0.5726 (0.6898) | acc 0.917 (0.944) | IoU 0.472 (0.524) | [8 days, 17:33:20]
Lr: 9.961e-03 | Update: 9.585e-04 mean,1.651e-03 std | Epoch: [1][410/1047] | Time 2.229 (2.411) | Data 1.097 (1.272) | Loss 0.8193 (0.6888) | acc 0.975 (0.944) | IoU 0.499 (0.525) | [8 days, 17:26:15]
Lr: 9.960e-03 | Update: 3.723e-04 mean,5.733e-04 std | Epoch: [1][420/1047] | Time 2.000 (2.409) | Data 0.797 (1.270) | Loss 0.4709 (0.6871) | acc 0.951 (0.945) | IoU 0.499 (0.525) | [8 days, 17:16:09]
Lr: 9.959e-03 | Update: 3.546e-04 mean,5.208e-04 std | Epoch: [1][430/1047] | Time 2.412 (2.408) | Data 1.284 (1.268) | Loss 0.6429 (0.6852) | acc 0.951 (0.945) | IoU 0.494 (0.526) | [8 days, 17:06:25]
Lr: 9.958e-03 | Update: 3.640e-04 mean,6.258e-04 std | Epoch: [1][440/1047] | Time 2.057 (2.406) | Data 0.798 (1.266) | Loss 0.4489 (0.6826) | acc 0.985 (0.946) | IoU 0.530 (0.527) | [8 days, 16:56:03]
Lr: 9.957e-03 | Update: 3.100e-04 mean,6.062e-04 std | Epoch: [1][450/1047] | Time 2.189 (2.404) | Data 0.971 (1.265) | Loss 0.5231 (0.6815) | acc 0.932 (0.946) | IoU 0.496 (0.528) | [8 days, 16:47:22]
Lr: 9.956e-03 | Update: 4.023e-04 mean,6.638e-04 std | Epoch: [1][460/1047] | Time 2.409 (2.403) | Data 1.315 (1.264) | Loss 0.5911 (0.6803) | acc 0.981 (0.947) | IoU 0.533 (0.527) | [8 days, 16:40:25]
Lr: 9.955e-03 | Update: 5.970e-04 mean,9.486e-04 std | Epoch: [1][470/1047] | Time 2.459 (2.402) | Data 1.304 (1.263) | Loss 0.6564 (0.6805) | acc 0.889 (0.947) | IoU 0.466 (0.528) | [8 days, 16:35:06]
Lr: 9.954e-03 | Update: 2.072e-03 mean,3.423e-03 std | Epoch: [1][480/1047] | Time 1.821 (2.401) | Data 0.621 (1.261) | Loss 1.5904 (0.6820) | acc 0.963 (0.946) | IoU 0.500 (0.527) | [8 days, 16:27:55]
Lr: 9.953e-03 | Update: 4.798e-04 mean,8.193e-04 std | Epoch: [1][490/1047] | Time 2.044 (2.400) | Data 0.780 (1.260) | Loss 0.7137 (0.6807) | acc 0.931 (0.947) | IoU 0.472 (0.528) | [8 days, 16:20:43]
Lr: 9.952e-03 | Update: 2.930e-04 mean,5.397e-04 std | Epoch: [1][500/1047] | Time 2.394 (2.399) | Data 1.378 (1.259) | Loss 0.6003 (0.6803) | acc 0.924 (0.947) | IoU 0.482 (0.527) | [8 days, 16:13:10]
Lr: 9.951e-03 | Update: 3.052e-04 mean,4.483e-04 std | Epoch: [1][510/1047] | Time 2.396 (2.398) | Data 1.281 (1.257) | Loss 0.5956 (0.6796) | acc 0.948 (0.947) | IoU 0.540 (0.528) | [8 days, 16:07:03]
Lr: 9.950e-03 | Update: 4.942e-04 mean,7.485e-04 std | Epoch: [1][520/1047] | Time 2.615 (2.397) | Data 1.472 (1.257) | Loss 0.6124 (0.6783) | acc 0.944 (0.947) | IoU 0.495 (0.528) | [8 days, 16:01:37]
Lr: 9.949e-03 | Update: 3.981e-04 mean,7.767e-04 std | Epoch: [1][530/1047] | Time 2.632 (2.396) | Data 1.504 (1.256) | Loss 0.6537 (0.6784) | acc 0.902 (0.946) | IoU 0.456 (0.527) | [8 days, 15:57:36]
Lr: 9.948e-03 | Update: 2.191e-04 mean,4.208e-04 std | Epoch: [1][540/1047] | Time 2.425 (2.395) | Data 1.303 (1.255) | Loss 0.6230 (0.6782) | acc 0.946 (0.947) | IoU 0.492 (0.528) | [8 days, 15:53:05]
Lr: 9.947e-03 | Update: 7.328e-04 mean,1.205e-03 std | Epoch: [1][550/1047] | Time 2.639 (2.394) | Data 1.469 (1.254) | Loss 0.7139 (0.6774) | acc 0.986 (0.948) | IoU 0.640 (0.529) | [8 days, 15:48:04]
Lr: 9.946e-03 | Update: 3.760e-04 mean,6.023e-04 std | Epoch: [1][560/1047] | Time 2.434 (2.393) | Data 1.283 (1.253) | Loss 0.6200 (0.6767) | acc 0.952 (0.947) | IoU 0.544 (0.529) | [8 days, 15:41:44]
Lr: 9.945e-03 | Update: 6.692e-04 mean,1.064e-03 std | Epoch: [1][570/1047] | Time 1.645 (2.392) | Data 0.582 (1.252) | Loss 0.6151 (0.6751) | acc 0.983 (0.948) | IoU 0.537 (0.529) | [8 days, 15:33:56]
Lr: 9.944e-03 | Update: 2.154e-04 mean,5.035e-04 std | Epoch: [1][580/1047] | Time 2.158 (2.392) | Data 0.937 (1.251) | Loss 0.6403 (0.6747) | acc 0.911 (0.948) | IoU 0.466 (0.530) | [8 days, 15:31:12]
Lr: 9.944e-03 | Update: 3.014e-04 mean,5.295e-04 std | Epoch: [1][590/1047] | Time 2.300 (2.391) | Data 1.152 (1.250) | Loss 0.5594 (0.6748) | acc 0.959 (0.948) | IoU 0.503 (0.529) | [8 days, 15:24:51]
Lr: 9.943e-03 | Update: 2.931e-04 mean,5.556e-04 std | Epoch: [1][600/1047] | Time 1.959 (2.390) | Data 0.773 (1.250) | Loss 0.6065 (0.6746) | acc 0.919 (0.948) | IoU 0.477 (0.530) | [8 days, 15:22:01]
Lr: 9.942e-03 | Update: 6.888e-04 mean,1.263e-03 std | Epoch: [1][610/1047] | Time 2.587 (2.390) | Data 1.412 (1.250) | Loss 0.6928 (0.6750) | acc 0.916 (0.947) | IoU 0.518 (0.530) | [8 days, 15:21:51]
Lr: 9.941e-03 | Update: 3.302e-04 mean,6.462e-04 std | Epoch: [1][620/1047] | Time 2.878 (2.390) | Data 1.626 (1.250) | Loss 0.4457 (0.6750) | acc 0.990 (0.947) | IoU 0.632 (0.530) | [8 days, 15:21:40]
Lr: 9.940e-03 | Update: 1.751e-04 mean,3.219e-04 std | Epoch: [1][630/1047] | Time 2.397 (2.391) | Data 1.218 (1.250) | Loss 0.5590 (0.6745) | acc 0.972 (0.948) | IoU 0.569 (0.530) | [8 days, 15:23:39]
Lr: 9.939e-03 | Update: 3.210e-04 mean,5.631e-04 std | Epoch: [1][640/1047] | Time 2.340 (2.392) | Data 1.048 (1.251) | Loss 0.4458 (0.6731) | acc 0.996 (0.948) | IoU 0.758 (0.531) | [8 days, 15:26:02]
Lr: 9.938e-03 | Update: 2.840e-03 mean,5.020e-03 std | Epoch: [1][650/1047] | Time 2.509 (2.391) | Data 1.218 (1.250) | Loss 0.9586 (0.6723) | acc 0.963 (0.949) | IoU 0.512 (0.532) | [8 days, 15:23:44]
Lr: 9.937e-03 | Update: 3.434e-04 mean,5.058e-04 std | Epoch: [1][660/1047] | Time 2.044 (2.392) | Data 0.920 (1.250) | Loss 0.6074 (0.6722) | acc 0.963 (0.949) | IoU 0.508 (0.531) | [8 days, 15:23:01]
Lr: 9.936e-03 | Update: 5.295e-04 mean,8.214e-04 std | Epoch: [1][670/1047] | Time 2.259 (2.391) | Data 1.134 (1.250) | Loss 0.6103 (0.6721) | acc 0.897 (0.948) | IoU 0.464 (0.532) | [8 days, 15:21:09]
Lr: 9.935e-03 | Update: 6.809e-04 mean,1.180e-03 std | Epoch: [1][680/1047] | Time 2.494 (2.391) | Data 1.282 (1.249) | Loss 0.7588 (0.6714) | acc 0.992 (0.949) | IoU 0.599 (0.532) | [8 days, 15:19:04]
Lr: 9.934e-03 | Update: 6.857e-04 mean,9.862e-04 std | Epoch: [1][690/1047] | Time 2.619 (2.392) | Data 1.453 (1.249) | Loss 0.5607 (0.6702) | acc 0.973 (0.949) | IoU 0.549 (0.533) | [8 days, 15:21:04]
Lr: 9.933e-03 | Update: 2.673e-04 mean,4.328e-04 std | Epoch: [1][700/1047] | Time 2.987 (2.393) | Data 1.657 (1.250) | Loss 0.6079 (0.6700) | acc 0.902 (0.949) | IoU 0.471 (0.533) | [8 days, 15:23:19]
Lr: 9.932e-03 | Update: 2.070e-04 mean,4.226e-04 std | Epoch: [1][710/1047] | Time 2.385 (2.394) | Data 1.256 (1.250) | Loss 0.5902 (0.6699) | acc 0.937 (0.949) | IoU 0.533 (0.532) | [8 days, 15:26:07]
Lr: 9.931e-03 | Update: 2.500e-04 mean,5.642e-04 std | Epoch: [1][720/1047] | Time 2.429 (2.394) | Data 1.313 (1.250) | Loss 0.5640 (0.6697) | acc 0.941 (0.949) | IoU 0.492 (0.533) | [8 days, 15:27:15]
Lr: 9.930e-03 | Update: 3.767e-04 mean,6.110e-04 std | Epoch: [1][730/1047] | Time 2.654 (2.395) | Data 1.478 (1.250) | Loss 0.6344 (0.6687) | acc 0.967 (0.949) | IoU 0.520 (0.532) | [8 days, 15:28:02]
Lr: 9.929e-03 | Update: 2.113e-04 mean,3.341e-04 std | Epoch: [1][740/1047] | Time 2.606 (2.395) | Data 1.340 (1.251) | Loss 0.5183 (0.6682) | acc 0.958 (0.949) | IoU 0.532 (0.533) | [8 days, 15:29:11]
Lr: 9.928e-03 | Update: 2.922e-04 mean,5.332e-04 std | Epoch: [1][750/1047] | Time 2.534 (2.396) | Data 1.329 (1.251) | Loss 0.4648 (0.6664) | acc 0.996 (0.949) | IoU 0.792 (0.534) | [8 days, 15:30:49]
Lr: 9.927e-03 | Update: 2.829e-04 mean,4.424e-04 std | Epoch: [1][760/1047] | Time 2.477 (2.397) | Data 1.220 (1.251) | Loss 0.5655 (0.6659) | acc 0.960 (0.950) | IoU 0.509 (0.534) | [8 days, 15:32:32]
Lr: 9.926e-03 | Update: 4.624e-04 mean,8.842e-04 std | Epoch: [1][770/1047] | Time 1.778 (2.395) | Data 0.758 (1.250) | Loss 0.5747 (0.6652) | acc 0.939 (0.950) | IoU 0.500 (0.535) | [8 days, 15:24:31]
Lr: 9.925e-03 | Update: 2.997e-04 mean,5.012e-04 std | Epoch: [1][780/1047] | Time 2.063 (2.392) | Data 0.963 (1.248) | Loss 0.6152 (0.6648) | acc 0.947 (0.950) | IoU 0.499 (0.534) | [8 days, 15:12:44]
Lr: 9.924e-03 | Update: 1.016e-03 mean,1.675e-03 std | Epoch: [1][790/1047] | Time 4.231 (2.391) | Data 2.844 (1.247) | Loss 0.8184 (0.6659) | acc 0.978 (0.950) | IoU 0.516 (0.534) | [8 days, 15:06:46]
Lr: 9.924e-03 | Update: 3.118e-04 mean,5.419e-04 std | Epoch: [1][800/1047] | Time 2.369 (2.391) | Data 1.156 (1.246) | Loss 0.6951 (0.6652) | acc 0.929 (0.950) | IoU 0.471 (0.535) | [8 days, 15:03:51]
Lr: 9.923e-03 | Update: 2.489e-04 mean,3.719e-04 std | Epoch: [1][810/1047] | Time 2.428 (2.392) | Data 1.377 (1.247) | Loss 0.4693 (0.6644) | acc 0.998 (0.951) | IoU 0.647 (0.535) | [8 days, 15:06:38]
Lr: 9.922e-03 | Update: 1.925e-04 mean,3.923e-04 std | Epoch: [1][820/1047] | Time 2.162 (2.392) | Data 0.846 (1.247) | Loss 0.4429 (0.6633) | acc 0.957 (0.951) | IoU 0.485 (0.536) | [8 days, 15:05:53]
Lr: 9.921e-03 | Update: 5.991e-04 mean,1.028e-03 std | Epoch: [1][830/1047] | Time 2.254 (2.391) | Data 1.084 (1.246) | Loss 0.5472 (0.6630) | acc 0.991 (0.951) | IoU 0.696 (0.536) | [8 days, 15:00:29]
Lr: 9.920e-03 | Update: 2.466e-04 mean,3.989e-04 std | Epoch: [1][840/1047] | Time 2.424 (2.391) | Data 1.172 (1.247) | Loss 0.5757 (0.6625) | acc 0.976 (0.952) | IoU 0.574 (0.536) | [8 days, 15:01:39]
Lr: 9.919e-03 | Update: 8.646e-04 mean,1.422e-03 std | Epoch: [1][850/1047] | Time 2.241 (2.390) | Data 1.162 (1.246) | Loss 0.7730 (0.6620) | acc 0.969 (0.952) | IoU 0.491 (0.537) | [8 days, 14:56:38]
Lr: 9.918e-03 | Update: 3.103e-04 mean,4.995e-04 std | Epoch: [1][860/1047] | Time 2.292 (2.389) | Data 1.230 (1.245) | Loss 0.5566 (0.6613) | acc 0.975 (0.952) | IoU 0.501 (0.536) | [8 days, 14:53:03]
Lr: 9.917e-03 | Update: 2.776e-04 mean,4.240e-04 std | Epoch: [1][870/1047] | Time 2.551 (2.390) | Data 1.410 (1.246) | Loss 0.5053 (0.6600) | acc 0.977 (0.952) | IoU 0.537 (0.537) | [8 days, 14:54:03]
Lr: 9.916e-03 | Update: 3.043e-04 mean,5.510e-04 std | Epoch: [1][880/1047] | Time 2.383 (2.390) | Data 1.224 (1.245) | Loss 0.4781 (0.6597) | acc 0.926 (0.952) | IoU 0.470 (0.537) | [8 days, 14:53:42]
Lr: 9.915e-03 | Update: 1.268e-03 mean,2.531e-03 std | Epoch: [1][890/1047] | Time 2.389 (2.389) | Data 1.161 (1.245) | Loss 0.6767 (0.6588) | acc 0.974 (0.953) | IoU 0.541 (0.538) | [8 days, 14:50:57]
Lr: 9.914e-03 | Update: 5.882e-04 mean,9.479e-04 std | Epoch: [1][900/1047] | Time 2.677 (2.389) | Data 1.715 (1.245) | Loss 0.6088 (0.6583) | acc 0.950 (0.953) | IoU 0.567 (0.538) | [8 days, 14:48:49]
Lr: 9.913e-03 | Update: 4.117e-04 mean,6.550e-04 std | Epoch: [1][910/1047] | Time 2.072 (2.388) | Data 0.987 (1.244) | Loss 0.5004 (0.6572) | acc 0.991 (0.953) | IoU 0.754 (0.539) | [8 days, 14:44:11]
Lr: 9.912e-03 | Update: 3.112e-04 mean,5.620e-04 std | Epoch: [1][920/1047] | Time 2.193 (2.389) | Data 1.020 (1.244) | Loss 0.6126 (0.6564) | acc 0.931 (0.953) | IoU 0.470 (0.539) | [8 days, 14:45:04]
Lr: 9.911e-03 | Update: 4.146e-04 mean,7.106e-04 std | Epoch: [1][930/1047] | Time 1.780 (2.388) | Data 0.691 (1.244) | Loss 0.4506 (0.6553) | acc 0.995 (0.953) | IoU 0.678 (0.540) | [8 days, 14:41:14]
Lr: 9.910e-03 | Update: 2.579e-03 mean,5.018e-03 std | Epoch: [1][940/1047] | Time 2.324 (2.389) | Data 1.242 (1.244) | Loss 0.8745 (0.6554) | acc 0.957 (0.953) | IoU 0.544 (0.540) | [8 days, 14:43:06]
Lr: 9.909e-03 | Update: 6.806e-04 mean,1.216e-03 std | Epoch: [1][950/1047] | Time 2.280 (2.388) | Data 0.999 (1.244) | Loss 0.8988 (0.6552) | acc 0.919 (0.953) | IoU 0.462 (0.540) | [8 days, 14:41:44]
Lr: 9.908e-03 | Update: 7.226e-04 mean,1.334e-03 std | Epoch: [1][960/1047] | Time 2.104 (2.388) | Data 0.879 (1.243) | Loss 0.6019 (0.6544) | acc 0.993 (0.953) | IoU 0.707 (0.541) | [8 days, 14:38:04]
Lr: 9.907e-03 | Update: 3.287e-04 mean,6.334e-04 std | Epoch: [1][970/1047] | Time 2.614 (2.387) | Data 1.493 (1.243) | Loss 0.4688 (0.6547) | acc 0.917 (0.953) | IoU 0.487 (0.541) | [8 days, 14:33:45]
Lr: 9.906e-03 | Update: 2.489e-04 mean,3.915e-04 std | Epoch: [1][980/1047] | Time 2.547 (2.388) | Data 1.314 (1.243) | Loss 0.5174 (0.6544) | acc 0.973 (0.953) | IoU 0.510 (0.540) | [8 days, 14:35:13]
Lr: 9.905e-03 | Update: 3.514e-04 mean,5.433e-04 std | Epoch: [1][990/1047] | Time 2.426 (2.387) | Data 1.357 (1.243) | Loss 0.5753 (0.6535) | acc 0.983 (0.953) | IoU 0.648 (0.542) | [8 days, 14:32:21]
Lr: 9.904e-03 | Update: 3.851e-04 mean,5.714e-04 std | Epoch: [1][1000/1047] | Time 2.385 (2.387) | Data 1.182 (1.243) | Loss 0.5885 (0.6532) | acc 0.940 (0.953) | IoU 0.529 (0.542) | [8 days, 14:33:28]
Lr: 9.904e-03 | Update: 4.517e-04 mean,6.910e-04 std | Epoch: [1][1010/1047] | Time 2.574 (2.387) | Data 1.573 (1.243) | Loss 0.6277 (0.6538) | acc 0.970 (0.953) | IoU 0.492 (0.542) | [8 days, 14:31:41]
Lr: 9.903e-03 | Update: 5.795e-04 mean,9.510e-04 std | Epoch: [1][1020/1047] | Time 2.402 (2.387) | Data 1.325 (1.243) | Loss 0.6783 (0.6528) | acc 0.991 (0.954) | IoU 0.729 (0.543) | [8 days, 14:29:07]
Lr: 9.902e-03 | Update: 4.181e-04 mean,6.529e-04 std | Epoch: [1][1030/1047] | Time 1.948 (2.386) | Data 0.809 (1.242) | Loss 0.5133 (0.6520) | acc 0.968 (0.954) | IoU 0.520 (0.543) | [8 days, 14:27:35]
Lr: 9.901e-03 | Update: 1.173e-03 mean,1.992e-03 std | Epoch: [1][1040/1047] | Time 2.097 (2.386) | Data 0.999 (1.242) | Loss 0.7131 (0.6514) | acc 0.994 (0.954) | IoU 0.670 (0.543) | [8 days, 14:24:02]
Best mean iou in training set so far, save model!
Validation:: 100%|████████████████████████████| 508/508 [17:01<00:00, 2.01s/it]
********************************************************************************
Validation set:
Time avg per batch 2.200
Loss avg 13.7639
Jaccard avg 0.9974
WCE avg 12.7665
Acc avg 0.003885
IoU avg 0.001944
IoU class 0 [unlabeled] = 0.000000
IoU class 1 [static] = 0.000284
IoU class 2 [moving] = 0.003604
********************************************************************************
Lr: 9.900e-03 | Update: 7.302e-04 mean,1.437e-03 std | Epoch: [2][0/1047] | Time 2.114 (2.386) | Data 0.840 (1.241) | Loss 0.6113 (0.6113) | acc 0.971 (0.971) | IoU 0.516 (0.516) | [8 days, 10:03:40]
Lr: 9.899e-03 | Update: 4.767e-04 mean,9.448e-04 std | Epoch: [2][10/1047] | Time 2.334 (2.384) | Data 1.097 (1.240) | Loss 0.5328 (0.6021) | acc 0.985 (0.975) | IoU 0.601 (0.560) | [8 days, 9:53:55]
Lr: 9.898e-03 | Update: 5.232e-04 mean,1.126e-03 std | Epoch: [2][20/1047] | Time 2.163 (2.382) | Data 1.139 (1.238) | Loss 0.5637 (0.6008) | acc 0.932 (0.960) | IoU 0.535 (0.548) | [8 days, 9:44:48]
Lr: 9.897e-03 | Update: 5.666e-04 mean,9.479e-04 std | Epoch: [2][30/1047] | Time 2.250 (2.380) | Data 1.212 (1.236) | Loss 0.5411 (0.6173) | acc 0.971 (0.956) | IoU 0.560 (0.545) | [8 days, 9:34:07]
Lr: 9.896e-03 | Update: 7.623e-04 mean,1.784e-03 std | Epoch: [2][40/1047] | Time 1.895 (2.378) | Data 0.752 (1.234) | Loss 0.5960 (0.6318) | acc 0.979 (0.963) | IoU 0.559 (0.553) | [8 days, 9:23:48]
Lr: 9.895e-03 | Update: 3.129e-04 mean,4.859e-04 std | Epoch: [2][50/1047] | Time 2.102 (2.377) | Data 0.955 (1.233) | Loss 0.4739 (0.6183) | acc 0.987 (0.962) | IoU 0.648 (0.549) | [8 days, 9:15:03]
Lr: 9.894e-03 | Update: 5.574e-04 mean,8.774e-04 std | Epoch: [2][60/1047] | Time 2.254 (2.375) | Data 1.055 (1.231) | Loss 0.5306 (0.6185) | acc 0.984 (0.966) | IoU 0.678 (0.560) | [8 days, 9:06:24]
Lr: 9.893e-03 | Update: 4.641e-04 mean,7.335e-04 std | Epoch: [2][70/1047] | Time 2.183 (2.373) | Data 1.067 (1.229) | Loss 0.6492 (0.6177) | acc 0.931 (0.963) | IoU 0.596 (0.556) | [8 days, 8:56:57]
Lr: 9.892e-03 | Update: 2.106e-04 mean,3.928e-04 std | Epoch: [2][80/1047] | Time 1.809 (2.371) | Data 0.645 (1.228) | Loss 0.4385 (0.6127) | acc 0.993 (0.962) | IoU 0.601 (0.554) | [8 days, 8:46:36]
Lr: 9.891e-03 | Update: 2.046e-04 mean,3.084e-04 std | Epoch: [2][90/1047] | Time 2.277 (2.370) | Data 0.998 (1.226) | Loss 0.5058 (0.6035) | acc 0.982 (0.965) | IoU 0.556 (0.562) | [8 days, 8:37:30]
Lr: 9.891e-03 | Update: 4.168e-04 mean,6.710e-04 std | Epoch: [2][100/1047] | Time 2.075 (2.368) | Data 0.835 (1.224) | Loss 0.5121 (0.6043) | acc 0.971 (0.965) | IoU 0.582 (0.562) | [8 days, 8:27:01]
Lr: 9.890e-03 | Update: 5.656e-04 mean,8.294e-04 std | Epoch: [2][110/1047] | Time 2.321 (2.366) | Data 1.251 (1.222) | Loss 0.6429 (0.6054) | acc 0.959 (0.965) | IoU 0.540 (0.561) | [8 days, 8:17:39]
Lr: 9.889e-03 | Update: 2.557e-04 mean,4.434e-04 std | Epoch: [2][120/1047] | Time 1.979 (2.364) | Data 0.962 (1.221) | Loss 0.5127 (0.6060) | acc 0.982 (0.966) | IoU 0.514 (0.564) | [8 days, 8:08:24]
Lr: 9.888e-03 | Update: 5.815e-04 mean,8.653e-04 std | Epoch: [2][130/1047] | Time 1.921 (2.363) | Data 0.725 (1.220) | Loss 0.7251 (0.6102) | acc 0.903 (0.964) | IoU 0.464 (0.561) | [8 days, 8:01:37]
Lr: 9.887e-03 | Update: 5.680e-04 mean,9.375e-04 std | Epoch: [2][140/1047] | Time 2.054 (2.362) | Data 0.746 (1.218) | Loss 0.6710 (0.6148) | acc 0.976 (0.963) | IoU 0.525 (0.558) | [8 days, 7:52:48]
Lr: 9.886e-03 | Update: 6.988e-04 mean,1.017e-03 std | Epoch: [2][150/1047] | Time 2.080 (2.360) | Data 0.922 (1.217) | Loss 0.6536 (0.6088) | acc 0.988 (0.964) | IoU 0.663 (0.563) | [8 days, 7:45:00]
Lr: 9.885e-03 | Update: 3.271e-04 mean,5.020e-04 std | Epoch: [2][160/1047] | Time 2.041 (2.358) | Data 0.738 (1.215) | Loss 0.5155 (0.6096) | acc 0.981 (0.965) | IoU 0.703 (0.562) | [8 days, 7:35:34]
Lr: 9.884e-03 | Update: 7.991e-04 mean,1.390e-03 std | Epoch: [2][170/1047] | Time 2.480 (2.357) | Data 1.378 (1.214) | Loss 0.6676 (0.6082) | acc 0.949 (0.965) | IoU 0.568 (0.563) | [8 days, 7:28:47]
Lr: 9.883e-03 | Update: 4.451e-04 mean,6.543e-04 std | Epoch: [2][180/1047] | Time 2.085 (2.355) | Data 0.974 (1.212) | Loss 0.5417 (0.6082) | acc 0.968 (0.964) | IoU 0.531 (0.561) | [8 days, 7:19:18]
Lr: 9.882e-03 | Update: 3.184e-04 mean,4.742e-04 std | Epoch: [2][190/1047] | Time 1.863 (2.354) | Data 0.772 (1.210) | Loss 0.5784 (0.6070) | acc 0.980 (0.965) | IoU 0.572 (0.563) | [8 days, 7:10:31]
Lr: 9.881e-03 | Update: 1.657e-04 mean,2.698e-04 std | Epoch: [2][200/1047] | Time 2.047 (2.353) | Data 0.741 (1.209) | Loss 0.4553 (0.6043) | acc 0.990 (0.966) | IoU 0.582 (0.564) | [8 days, 7:03:13]
Lr: 9.880e-03 | Update: 3.405e-04 mean,5.319e-04 std | Epoch: [2][210/1047] | Time 1.973 (2.351) | Data 0.672 (1.207) | Loss 0.5519 (0.6018) | acc 0.984 (0.967) | IoU 0.625 (0.566) | [8 days, 6:54:58]
Lr: 9.879e-03 | Update: 2.167e-04 mean,3.565e-04 std | Epoch: [2][220/1047] | Time 2.050 (2.350) | Data 0.965 (1.206) | Loss 0.4210 (0.5997) | acc 0.989 (0.967) | IoU 0.647 (0.565) | [8 days, 6:47:49]
Lr: 9.878e-03 | Update: 5.496e-04 mean,9.348e-04 std | Epoch: [2][230/1047] | Time 1.717 (2.349) | Data 0.687 (1.205) | Loss 0.6956 (0.5991) | acc 0.986 (0.968) | IoU 0.620 (0.567) | [8 days, 6:39:58]
Lr: 9.877e-03 | Update: 2.273e-04 mean,4.180e-04 std | Epoch: [2][240/1047] | Time 1.715 (2.347) | Data 0.641 (1.203) | Loss 0.5140 (0.5967) | acc 0.981 (0.968) | IoU 0.550 (0.569) | [8 days, 6:31:23]
Lr: 9.876e-03 | Update: 1.175e-03 mean,2.382e-03 std | Epoch: [2][250/1047] | Time 1.765 (2.346) | Data 0.678 (1.202) | Loss 0.6459 (0.5963) | acc 0.979 (0.969) | IoU 0.558 (0.571) | [8 days, 6:23:56]
Lr: 9.875e-03 | Update: 3.305e-04 mean,5.586e-04 std | Epoch: [2][260/1047] | Time 1.866 (2.344) | Data 0.776 (1.200) | Loss 0.5167 (0.5981) | acc 0.951 (0.969) | IoU 0.527 (0.570) | [8 days, 6:15:34]
Lr: 9.874e-03 | Update: 2.648e-04 mean,4.097e-04 std | Epoch: [2][270/1047] | Time 1.917 (2.343) | Data 0.779 (1.199) | Loss 0.5131 (0.5970) | acc 0.993 (0.969) | IoU 0.606 (0.573) | [8 days, 6:07:42]
Lr: 9.873e-03 | Update: 2.461e-04 mean,4.216e-04 std | Epoch: [2][280/1047] | Time 1.959 (2.342) | Data 0.782 (1.198) | Loss 0.5798 (0.5967) | acc 0.997 (0.970) | IoU 0.731 (0.573) | [8 days, 6:01:14]
Lr: 9.872e-03 | Update: 2.617e-04 mean,3.898e-04 std | Epoch: [2][290/1047] | Time 2.092 (2.341) | Data 0.778 (1.197) | Loss 0.5591 (0.5968) | acc 0.948 (0.970) | IoU 0.502 (0.575) | [8 days, 5:54:43]
Lr: 9.872e-03 | Update: 3.706e-04 mean,5.668e-04 std | Epoch: [2][300/1047] | Time 2.102 (2.339) | Data 0.917 (1.195) | Loss 0.5084 (0.5955) | acc 0.993 (0.970) | IoU 0.688 (0.575) | [8 days, 5:48:00]
Lr: 9.871e-03 | Update: 3.789e-04 mean,5.565e-04 std | Epoch: [2][310/1047] | Time 2.032 (2.338) | Data 0.881 (1.194) | Loss 0.5947 (0.5963) | acc 0.942 (0.970) | IoU 0.496 (0.574) | [8 days, 5:39:52]
Lr: 9.870e-03 | Update: 2.561e-04 mean,3.936e-04 std | Epoch: [2][320/1047] | Time 2.260 (2.337) | Data 1.019 (1.193) | Loss 0.4854 (0.5959) | acc 0.991 (0.970) | IoU 0.644 (0.574) | [8 days, 5:33:11]
Lr: 9.869e-03 | Update: 2.404e-04 mean,4.036e-04 std | Epoch: [2][330/1047] | Time 2.169 (2.335) | Data 1.114 (1.192) | Loss 0.5057 (0.5949) | acc 0.994 (0.970) | IoU 0.693 (0.575) | [8 days, 5:26:15]
Lr: 9.868e-03 | Update: 2.016e-04 mean,3.798e-04 std | Epoch: [2][340/1047] | Time 1.724 (2.334) | Data 0.708 (1.190) | Loss 0.6499 (0.5949) | acc 0.921 (0.970) | IoU 0.466 (0.574) | [8 days, 5:19:08]
Lr: 9.867e-03 | Update: 9.583e-04 mean,1.438e-03 std | Epoch: [2][350/1047] | Time 2.173 (2.333) | Data 1.060 (1.189) | Loss 0.7757 (0.5943) | acc 0.981 (0.969) | IoU 0.522 (0.573) | [8 days, 5:11:33]
Lr: 9.866e-03 | Update: 1.977e-04 mean,3.676e-04 std | Epoch: [2][360/1047] | Time 2.054 (2.331) | Data 0.972 (1.188) | Loss 0.3646 (0.5924) | acc 0.956 (0.970) | IoU 0.527 (0.575) | [8 days, 5:04:12]
Lr: 9.865e-03 | Update: 2.715e-04 mean,3.884e-04 std | Epoch: [2][370/1047] | Time 2.345 (2.330) | Data 1.212 (1.187) | Loss 0.4868 (0.5915) | acc 0.982 (0.969) | IoU 0.656 (0.574) | [8 days, 4:57:15]
Lr: 9.864e-03 | Update: 4.739e-04 mean,7.169e-04 std | Epoch: [2][380/1047] | Time 2.016 (2.329) | Data 0.887 (1.185) | Loss 0.5739 (0.5921) | acc 0.967 (0.969) | IoU 0.604 (0.574) | [8 days, 4:50:33]
Lr: 9.863e-03 | Update: 5.131e-04 mean,8.309e-04 std | Epoch: [2][390/1047] | Time 1.825 (2.328) | Data 0.696 (1.184) | Loss 0.5815 (0.5920) | acc 0.934 (0.969) | IoU 0.550 (0.573) | [8 days, 4:44:35]
Lr: 9.862e-03 | Update: 2.829e-04 mean,4.466e-04 std | Epoch: [2][400/1047] | Time 1.803 (2.327) | Data 0.628 (1.183) | Loss 0.4179 (0.5906) | acc 0.989 (0.969) | IoU 0.595 (0.573) | [8 days, 4:37:18]
Lr: 9.861e-03 | Update: 2.994e-04 mean,4.201e-04 std | Epoch: [2][410/1047] | Time 2.131 (2.326) | Data 1.128 (1.182) | Loss 0.5244 (0.5898) | acc 0.937 (0.969) | IoU 0.533 (0.574) | [8 days, 4:31:28]
Lr: 9.860e-03 | Update: 2.803e-04 mean,4.588e-04 std | Epoch: [2][420/1047] | Time 2.024 (2.325) | Data 1.004 (1.180) | Loss 0.5438 (0.5897) | acc 0.972 (0.968) | IoU 0.515 (0.572) | [8 days, 4:24:22]
Lr: 9.859e-03 | Update: 2.510e-03 mean,4.268e-03 std | Epoch: [2][430/1047] | Time 1.820 (2.324) | Data 0.753 (1.180) | Loss 1.1294 (0.5892) | acc 0.987 (0.969) | IoU 0.717 (0.574) | [8 days, 4:19:05]
Lr: 9.858e-03 | Update: 7.258e-04 mean,1.380e-03 std | Epoch: [2][440/1047] | Time 2.096 (2.323) | Data 0.848 (1.179) | Loss 0.5499 (0.5894) | acc 0.916 (0.968) | IoU 0.494 (0.573) | [8 days, 4:13:37]
Lr: 9.857e-03 | Update: 2.975e-04 mean,4.934e-04 std | Epoch: [2][450/1047] | Time 2.310 (2.322) | Data 1.242 (1.178) | Loss 0.4865 (0.5903) | acc 0.962 (0.968) | IoU 0.583 (0.572) | [8 days, 4:07:23]
Lr: 9.856e-03 | Update: 2.298e-04 mean,3.500e-04 std | Epoch: [2][460/1047] | Time 2.071 (2.321) | Data 0.782 (1.177) | Loss 0.4810 (0.5894) | acc 0.994 (0.968) | IoU 0.597 (0.572) | [8 days, 4:03:41]
Lr: 9.855e-03 | Update: 1.884e-04 mean,3.490e-04 std | Epoch: [2][470/1047] | Time 2.526 (2.320) | Data 1.246 (1.176) | Loss 0.3772 (0.5887) | acc 0.989 (0.968) | IoU 0.601 (0.573) | [8 days, 3:58:27]
Lr: 9.854e-03 | Update: 3.068e-04 mean,4.535e-04 std | Epoch: [2][480/1047] | Time 2.101 (2.319) | Data 0.984 (1.175) | Loss 0.5765 (0.5897) | acc 0.972 (0.969) | IoU 0.531 (0.573) | [8 days, 3:51:23]
Lr: 9.854e-03 | Update: 3.816e-04 mean,6.505e-04 std | Epoch: [2][490/1047] | Time 2.304 (2.318) | Data 1.129 (1.174) | Loss 0.5067 (0.5894) | acc 0.991 (0.969) | IoU 0.649 (0.574) | [8 days, 3:45:37]
Lr: 9.853e-03 | Update: 3.958e-04 mean,6.682e-04 std | Epoch: [2][500/1047] | Time 2.118 (2.317) | Data 1.090 (1.173) | Loss 0.5750 (0.5874) | acc 0.983 (0.969) | IoU 0.534 (0.574) | [8 days, 3:39:17]
Lr: 9.852e-03 | Update: 2.595e-04 mean,3.979e-04 std | Epoch: [2][510/1047] | Time 2.189 (2.316) | Data 1.125 (1.171) | Loss 0.4795 (0.5867) | acc 0.985 (0.970) | IoU 0.568 (0.575) | [8 days, 3:32:08]
Lr: 9.851e-03 | Update: 3.953e-04 mean,6.530e-04 std | Epoch: [2][520/1047] | Time 1.966 (2.314) | Data 0.892 (1.170) | Loss 0.6137 (0.5870) | acc 0.958 (0.970) | IoU 0.484 (0.574) | [8 days, 3:25:23]
Lr: 9.850e-03 | Update: 2.604e-04 mean,4.414e-04 std | Epoch: [2][530/1047] | Time 2.246 (2.313) | Data 1.045 (1.169) | Loss 0.3437 (0.5856) | acc 0.990 (0.970) | IoU 0.561 (0.575) | [8 days, 3:18:40]
Lr: 9.849e-03 | Update: 2.235e-04 mean,3.578e-04 std | Epoch: [2][540/1047] | Time 2.011 (2.312) | Data 0.911 (1.168) | Loss 0.4731 (0.5859) | acc 0.991 (0.970) | IoU 0.605 (0.576) | [8 days, 3:12:51]
Lr: 9.848e-03 | Update: 2.988e-04 mean,4.733e-04 std | Epoch: [2][550/1047] | Time 2.140 (2.311) | Data 0.841 (1.167) | Loss 0.4493 (0.5846) | acc 0.981 (0.971) | IoU 0.642 (0.576) | [8 days, 3:07:02]
Lr: 9.847e-03 | Update: 3.306e-04 mean,5.251e-04 std | Epoch: [2][560/1047] | Time 1.960 (2.310) | Data 0.866 (1.166) | Loss 0.5785 (0.5845) | acc 0.995 (0.971) | IoU 0.716 (0.577) | [8 days, 3:01:15]
Lr: 9.846e-03 | Update: 5.788e-04 mean,8.871e-04 std | Epoch: [2][570/1047] | Time 1.821 (2.309) | Data 0.694 (1.165) | Loss 0.6331 (0.5846) | acc 0.945 (0.971) | IoU 0.490 (0.577) | [8 days, 2:56:11]
Lr: 9.845e-03 | Update: 3.449e-04 mean,5.058e-04 std | Epoch: [2][580/1047] | Time 1.804 (2.308) | Data 0.709 (1.164) | Loss 0.5373 (0.5855) | acc 0.954 (0.971) | IoU 0.531 (0.576) | [8 days, 2:49:40]
Lr: 9.844e-03 | Update: 3.421e-04 mean,5.160e-04 std | Epoch: [2][590/1047] | Time 2.301 (2.307) | Data 1.034 (1.163) | Loss 0.5497 (0.5848) | acc 0.990 (0.971) | IoU 0.544 (0.577) | [8 days, 2:44:47]
Lr: 9.843e-03 | Update: 2.671e-04 mean,4.005e-04 std | Epoch: [2][600/1047] | Time 2.286 (2.306) | Data 1.154 (1.162) | Loss 0.4290 (0.5843) | acc 0.997 (0.971) | IoU 0.804 (0.578) | [8 days, 2:39:05]
Lr: 9.842e-03 | Update: 3.421e-04 mean,5.043e-04 std | Epoch: [2][610/1047] | Time 1.880 (2.305) | Data 0.799 (1.161) | Loss 0.4707 (0.5841) | acc 0.985 (0.971) | IoU 0.604 (0.579) | [8 days, 2:32:45]
Lr: 9.841e-03 | Update: 2.452e-04 mean,3.642e-04 std | Epoch: [2][620/1047] | Time 2.108 (2.305) | Data 0.862 (1.160) | Loss 0.5597 (0.5854) | acc 0.944 (0.971) | IoU 0.532 (0.578) | [8 days, 2:28:28]
Lr: 9.840e-03 | Update: 1.868e-04 mean,3.252e-04 std | Epoch: [2][630/1047] | Time 2.243 (2.304) | Data 1.159 (1.159) | Loss 0.4841 (0.5849) | acc 0.991 (0.971) | IoU 0.633 (0.578) | [8 days, 2:23:31]
Lr: 9.839e-03 | Update: 2.588e-04 mean,3.762e-04 std | Epoch: [2][640/1047] | Time 2.077 (2.303) | Data 0.939 (1.158) | Loss 0.3959 (0.5842) | acc 0.987 (0.971) | IoU 0.541 (0.578) | [8 days, 2:16:52]
Lr: 9.838e-03 | Update: 4.803e-04 mean,7.683e-04 std | Epoch: [2][650/1047] | Time 2.206 (2.302) | Data 1.059 (1.157) | Loss 0.5278 (0.5834) | acc 0.995 (0.971) | IoU 0.690 (0.579) | [8 days, 2:13:07]
Lr: 9.837e-03 | Update: 4.534e-04 mean,6.769e-04 std | Epoch: [2][660/1047] | Time 2.340 (2.301) | Data 1.174 (1.156) | Loss 0.5687 (0.5834) | acc 0.981 (0.972) | IoU 0.533 (0.579) | [8 days, 2:06:51]
Lr: 9.837e-03 | Update: 2.673e-04 mean,3.992e-04 std | Epoch: [2][670/1047] | Time 1.842 (2.300) | Data 0.822 (1.155) | Loss 0.4827 (0.5829) | acc 0.978 (0.972) | IoU 0.603 (0.579) | [8 days, 2:01:09]
Lr: 9.836e-03 | Update: 2.553e-04 mean,4.748e-04 std | Epoch: [2][680/1047] | Time 1.980 (2.299) | Data 0.711 (1.154) | Loss 0.5558 (0.5828) | acc 0.995 (0.972) | IoU 0.639 (0.579) | [8 days, 1:55:25]
Lr: 9.835e-03 | Update: 4.682e-04 mean,6.814e-04 std | Epoch: [2][690/1047] | Time 2.079 (2.298) | Data 0.958 (1.153) | Loss 0.7038 (0.5828) | acc 0.977 (0.972) | IoU 0.585 (0.580) | [8 days, 1:49:57]
Lr: 9.834e-03 | Update: 1.682e-04 mean,3.055e-04 std | Epoch: [2][700/1047] | Time 2.138 (2.297) | Data 0.952 (1.152) | Loss 0.5143 (0.5823) | acc 0.947 (0.972) | IoU 0.501 (0.580) | [8 days, 1:44:40]
Lr: 9.833e-03 | Update: 5.005e-04 mean,7.660e-04 std | Epoch: [2][710/1047] | Time 2.285 (2.296) | Data 1.130 (1.151) | Loss 0.6014 (0.5819) | acc 0.990 (0.972) | IoU 0.663 (0.579) | [8 days, 1:39:18]
Lr: 9.832e-03 | Update: 1.932e-04 mean,3.568e-04 std | Epoch: [2][720/1047] | Time 2.147 (2.296) | Data 0.802 (1.151) | Loss 0.5058 (0.5816) | acc 0.959 (0.972) | IoU 0.509 (0.579) | [8 days, 1:35:47]
Lr: 9.831e-03 | Update: 1.939e-04 mean,3.215e-04 std | Epoch: [2][730/1047] | Time 2.266 (2.295) | Data 1.131 (1.150) | Loss 0.4759 (0.5811) | acc 0.990 (0.972) | IoU 0.663 (0.579) | [8 days, 1:31:04]
Lr: 9.830e-03 | Update: 6.998e-04 mean,1.041e-03 std | Epoch: [2][740/1047] | Time 2.190 (2.294) | Data 1.141 (1.149) | Loss 0.6195 (0.5804) | acc 0.978 (0.972) | IoU 0.573 (0.580) | [8 days, 1:25:00]
Lr: 9.829e-03 | Update: 2.000e-03 mean,3.336e-03 std | Epoch: [2][750/1047] | Time 1.867 (2.293) | Data 0.691 (1.148) | Loss 0.6657 (0.5800) | acc 0.968 (0.972) | IoU 0.551 (0.580) | [8 days, 1:20:42]
Lr: 9.828e-03 | Update: 1.729e-04 mean,2.763e-04 std | Epoch: [2][760/1047] | Time 2.127 (2.292) | Data 0.764 (1.147) | Loss 0.4223 (0.5788) | acc 0.990 (0.972) | IoU 0.718 (0.580) | [8 days, 1:15:31]
Lr: 9.827e-03 | Update: 2.343e-04 mean,3.843e-04 std | Epoch: [2][770/1047] | Time 1.986 (2.292) | Data 0.724 (1.146) | Loss 0.4848 (0.5780) | acc 0.964 (0.972) | IoU 0.545 (0.581) | [8 days, 1:12:10]
Lr: 9.826e-03 | Update: 7.675e-04 mean,1.161e-03 std | Epoch: [2][780/1047] | Time 2.142 (2.291) | Data 1.066 (1.146) | Loss 0.8327 (0.5785) | acc 0.970 (0.972) | IoU 0.566 (0.581) | [8 days, 1:07:20]
Lr: 9.825e-03 | Update: 2.095e-04 mean,3.881e-04 std | Epoch: [2][790/1047] | Time 2.006 (2.290) | Data 0.892 (1.145) | Loss 0.4056 (0.5782) | acc 0.983 (0.972) | IoU 0.501 (0.581) | [8 days, 1:02:30]
Lr: 9.824e-03 | Update: 2.582e-04 mean,3.942e-04 std | Epoch: [2][800/1047] | Time 2.012 (2.289) | Data 0.868 (1.144) | Loss 0.6374 (0.5786) | acc 0.978 (0.973) | IoU 0.569 (0.581) | [8 days, 0:56:07]
Lr: 9.823e-03 | Update: 2.704e-04 mean,4.045e-04 std | Epoch: [2][810/1047] | Time 2.126 (2.288) | Data 1.060 (1.143) | Loss 0.5159 (0.5781) | acc 0.992 (0.973) | IoU 0.671 (0.581) | [8 days, 0:50:51]
Lr: 9.822e-03 | Update: 1.890e-04 mean,3.500e-04 std | Epoch: [2][820/1047] | Time 2.007 (2.287) | Data 0.904 (1.142) | Loss 0.3577 (0.5771) | acc 0.996 (0.973) | IoU 0.685 (0.582) | [8 days, 0:45:48]
Lr: 9.821e-03 | Update: 4.574e-04 mean,7.285e-04 std | Epoch: [2][830/1047] | Time 2.085 (2.287) | Data 0.931 (1.141) | Loss 0.6718 (0.5769) | acc 0.981 (0.973) | IoU 0.552 (0.583) | [8 days, 0:43:04]
Lr: 9.820e-03 | Update: 1.195e-03 mean,1.839e-03 std | Epoch: [2][840/1047] | Time 2.348 (2.286) | Data 1.034 (1.141) | Loss 0.6892 (0.5769) | acc 0.952 (0.973) | IoU 0.511 (0.583) | [8 days, 0:38:16]
Lr: 9.820e-03 | Update: 4.959e-04 mean,7.981e-04 std | Epoch: [2][850/1047] | Time 2.053 (2.285) | Data 0.911 (1.140) | Loss 0.3600 (0.5760) | acc 0.995 (0.973) | IoU 0.773 (0.584) | [8 days, 0:32:57]
Lr: 9.819e-03 | Update: 1.981e-04 mean,3.109e-04 std | Epoch: [2][860/1047] | Time 2.218 (2.284) | Data 0.854 (1.139) | Loss 0.4770 (0.5759) | acc 0.955 (0.973) | IoU 0.548 (0.584) | [8 days, 0:28:39]
Lr: 9.818e-03 | Update: 2.137e-04 mean,3.143e-04 std | Epoch: [2][870/1047] | Time 1.887 (2.283) | Data 0.699 (1.138) | Loss 0.5650 (0.5761) | acc 0.972 (0.973) | IoU 0.516 (0.584) | [8 days, 0:22:14]
Lr: 9.817e-03 | Update: 7.041e-04 mean,1.160e-03 std | Epoch: [2][880/1047] | Time 2.011 (2.282) | Data 0.777 (1.137) | Loss 0.5781 (0.5758) | acc 0.995 (0.973) | IoU 0.760 (0.585) | [8 days, 0:17:02]
Lr: 9.816e-03 | Update: 2.724e-04 mean,4.208e-04 std | Epoch: [2][890/1047] | Time 1.926 (2.282) | Data 0.740 (1.136) | Loss 0.4449 (0.5754) | acc 0.936 (0.973) | IoU 0.500 (0.584) | [8 days, 0:12:03]
Lr: 9.815e-03 | Update: 2.555e-04 mean,3.567e-04 std | Epoch: [2][900/1047] | Time 2.101 (2.281) | Data 0.826 (1.135) | Loss 0.4801 (0.5753) | acc 0.981 (0.973) | IoU 0.517 (0.584) | [8 days, 0:08:22]
Lr: 9.814e-03 | Update: 3.533e-04 mean,5.482e-04 std | Epoch: [2][910/1047] | Time 2.003 (2.280) | Data 0.798 (1.135) | Loss 0.4913 (0.5751) | acc 0.978 (0.973) | IoU 0.522 (0.584) | [8 days, 0:03:48]
Lr: 9.813e-03 | Update: 2.049e-04 mean,3.171e-04 std | Epoch: [2][920/1047] | Time 2.152 (2.279) | Data 0.960 (1.134) | Loss 0.4821 (0.5745) | acc 0.981 (0.973) | IoU 0.560 (0.584) | [7 days, 23:59:00]
Lr: 9.812e-03 | Update: 3.398e-04 mean,5.524e-04 std | Epoch: [2][930/1047] | Time 1.876 (2.279) | Data 0.684 (1.133) | Loss 0.5895 (0.5753) | acc 0.989 (0.973) | IoU 0.704 (0.584) | [7 days, 23:56:18]
Lr: 9.811e-03 | Update: 3.204e-04 mean,4.326e-04 std | Epoch: [2][940/1047] | Time 1.984 (2.278) | Data 0.832 (1.133) | Loss 0.6829 (0.5759) | acc 0.934 (0.973) | IoU 0.532 (0.584) | [7 days, 23:52:02]
Lr: 9.810e-03 | Update: 1.923e-04 mean,3.159e-04 std | Epoch: [2][950/1047] | Time 2.104 (2.277) | Data 1.019 (1.132) | Loss 0.4712 (0.5759) | acc 0.979 (0.973) | IoU 0.612 (0.583) | [7 days, 23:47:27]
Lr: 9.809e-03 | Update: 6.764e-04 mean,1.047e-03 std | Epoch: [2][960/1047] | Time 1.912 (2.277) | Data 0.830 (1.131) | Loss 0.5642 (0.5756) | acc 0.995 (0.973) | IoU 0.720 (0.584) | [7 days, 23:43:36]
Lr: 9.808e-03 | Update: 4.035e-04 mean,7.429e-04 std | Epoch: [2][970/1047] | Time 1.846 (2.276) | Data 0.827 (1.130) | Loss 0.5801 (0.5761) | acc 0.978 (0.973) | IoU 0.572 (0.584) | [7 days, 23:38:54]
Lr: 9.807e-03 | Update: 5.201e-04 mean,7.222e-04 std | Epoch: [2][980/1047] | Time 2.553 (2.276) | Data 1.508 (1.130) | Loss 0.6024 (0.5757) | acc 0.989 (0.973) | IoU 0.661 (0.584) | [7 days, 23:37:14]
Lr: 9.806e-03 | Update: 2.817e-04 mean,4.138e-04 std | Epoch: [2][990/1047] | Time 2.015 (2.275) | Data 0.985 (1.129) | Loss 0.5154 (0.5757) | acc 0.979 (0.973) | IoU 0.677 (0.585) | [7 days, 23:32:42]
Lr: 9.805e-03 | Update: 4.057e-04 mean,6.047e-04 std | Epoch: [2][1000/1047] | Time 2.191 (2.275) | Data 1.129 (1.129) | Loss 0.5675 (0.5755) | acc 0.985 (0.973) | IoU 0.627 (0.585) | [7 days, 23:31:00]
Lr: 9.804e-03 | Update: 4.980e-04 mean,7.848e-04 std | Epoch: [2][1010/1047] | Time 1.978 (2.274) | Data 0.826 (1.129) | Loss 0.5484 (0.5747) | acc 0.991 (0.974) | IoU 0.703 (0.586) | [7 days, 23:27:30]
Lr: 9.804e-03 | Update: 2.737e-04 mean,4.208e-04 std | Epoch: [2][1020/1047] | Time 2.041 (2.274) | Data 0.812 (1.128) | Loss 0.4948 (0.5750) | acc 0.973 (0.974) | IoU 0.567 (0.586) | [7 days, 23:23:59]
Lr: 9.803e-03 | Update: 2.185e-04 mean,3.759e-04 std | Epoch: [2][1030/1047] | Time 2.482 (2.273) | Data 1.372 (1.127) | Loss 0.5026 (0.5750) | acc 0.985 (0.974) | IoU 0.530 (0.586) | [7 days, 23:20:07]
Lr: 9.802e-03 | Update: 1.719e-04 mean,3.503e-04 std | Epoch: [2][1040/1047] | Time 2.230 (2.273) | Data 1.120 (1.127) | Loss 0.4875 (0.5744) | acc 0.983 (0.974) | IoU 0.527 (0.586) | [7 days, 23:18:48]
Best mean iou in training set so far, save model!
Validation:: 100%|████████████████████████████| 508/508 [13:08<00:00, 1.55s/it]
********************************************************************************
Validation set:
Time avg per batch 1.984
Loss avg 0.4537
Jaccard avg 0.2476
WCE avg 0.2061
Acc avg 0.994580
IoU avg 0.652938
IoU class 0 [unlabeled] = 0.000000
IoU class 1 [static] = 0.994566
IoU class 2 [moving] = 0.311309
********************************************************************************
Best mean iou in validation so far, save model!
********************************************************************************
Lr: 9.801e-03 | Update: 3.175e-04 mean,4.770e-04 std | Epoch: [3][0/1047] | Time 1.666 (2.272) | Data 0.544 (1.127) | Loss 0.3843 (0.3843) | acc 0.995 (0.995) | IoU 0.725 (0.725) | [7 days, 18:28:05]
Lr: 9.800e-03 | Update: 3.091e-04 mean,4.233e-04 std | Epoch: [3][10/1047] | Time 1.863 (2.272) | Data 0.723 (1.126) | Loss 0.4977 (0.4958) | acc 0.987 (0.991) | IoU 0.544 (0.665) | [7 days, 18:23:54]
Lr: 9.798e-03 | Update: 3.157e-04 mean,4.726e-04 std | Epoch: [3][30/1047] | Time 1.804 (2.270) | Data 0.613 (1.124) | Loss 0.4201 (0.5200) | acc 0.994 (0.989) | IoU 0.778 (0.641) | [7 days, 18:14:42]
Lr: 9.797e-03 | Update: 7.679e-04 mean,1.100e-03 std | Epoch: [3][40/1047] | Time 1.854 (2.269) | Data 0.695 (1.124) | Loss 0.6597 (0.5282) | acc 0.977 (0.987) | IoU 0.589 (0.629) | [7 days, 18:10:02]
Lr: 9.796e-03 | Update: 3.945e-04 mean,5.962e-04 std | Epoch: [3][50/1047] | Time 1.778 (2.268) | Data 0.685 (1.123) | Loss 0.5584 (0.5322) | acc 0.960 (0.984) | IoU 0.496 (0.615) | [7 days, 18:05:09]
Lr: 9.795e-03 | Update: 9.331e-04 mean,1.443e-03 std | Epoch: [3][60/1047] | Time 1.775 (2.267) | Data 0.717 (1.122) | Loss 0.7657 (0.5414) | acc 0.961 (0.982) | IoU 0.493 (0.609) | [7 days, 18:00:15]
Lr: 9.794e-03 | Update: 2.003e-04 mean,2.806e-04 std | Epoch: [3][70/1047] | Time 1.875 (2.266) | Data 0.862 (1.121) | Loss 0.4307 (0.5382) | acc 0.994 (0.982) | IoU 0.723 (0.609) | [7 days, 17:54:49]
Lr: 9.793e-03 | Update: 3.548e-04 mean,5.141e-04 std | Epoch: [3][80/1047] | Time 2.127 (2.266) | Data 0.939 (1.120) | Loss 0.5594 (0.5382) | acc 0.981 (0.983) | IoU 0.616 (0.614) | [7 days, 17:50:14]
Lr: 9.792e-03 | Update: 2.590e-04 mean,3.451e-04 std | Epoch: [3][100/1047] | Time 2.143 (2.264) | Data 0.828 (1.119) | Loss 0.3809 (0.5330) | acc 0.997 (0.984) | IoU 0.828 (0.616) | [7 days, 17:41:18]
Lr: 9.791e-03 | Update: 1.925e-04 mean,2.884e-04 std | Epoch: [3][110/1047] | Time 1.884 (2.263) | Data 0.782 (1.118) | Loss 0.5354 (0.5357) | acc 0.969 (0.983) | IoU 0.509 (0.612) | [7 days, 17:36:02]
Lr: 9.790e-03 | Update: 3.232e-04 mean,5.650e-04 std | Epoch: [3][120/1047] | Time 1.816 (2.262) | Data 0.662 (1.117) | Loss 0.4771 (0.5326) | acc 0.996 (0.984) | IoU 0.788 (0.615) | [7 days, 17:31:08]
Lr: 9.789e-03 | Update: 7.322e-04 mean,1.389e-03 std | Epoch: [3][130/1047] | Time 1.783 (2.261) | Data 0.701 (1.116) | Loss 0.5049 (0.5335) | acc 0.976 (0.983) | IoU 0.589 (0.615) | [7 days, 17:26:23]
Lr: 9.788e-03 | Update: 9.494e-04 mean,1.488e-03 std | Epoch: [3][140/1047] | Time 2.318 (2.261) | Data 1.056 (1.115) | Loss 0.5711 (0.5322) | acc 0.990 (0.984) | IoU 0.704 (0.613) | [7 days, 17:21:15]
Lr: 9.787e-03 | Update: 3.352e-04 mean,5.493e-04 std | Epoch: [3][150/1047] | Time 1.776 (2.260) | Data 0.673 (1.114) | Loss 0.5472 (0.5329) | acc 0.950 (0.983) | IoU 0.499 (0.614) | [7 days, 17:15:54]
Lr: 9.786e-03 | Update: 7.534e-04 mean,1.057e-03 std | Epoch: [3][160/1047] | Time 1.821 (2.259) | Data 0.682 (1.114) | Loss 0.5959 (0.5331) | acc 0.987 (0.983) | IoU 0.693 (0.612) | [7 days, 17:11:36]
Lr: 9.785e-03 | Update: 3.515e-04 mean,5.620e-04 std | Epoch: [3][170/1047] | Time 1.956 (2.258) | Data 0.893 (1.113) | Loss 0.4188 (0.5349) | acc 0.984 (0.982) | IoU 0.665 (0.610) | [7 days, 17:06:27]
Lr: 9.784e-03 | Update: 6.282e-04 mean,1.156e-03 std | Epoch: [3][180/1047] | Time 1.911 (2.257) | Data 0.867 (1.112) | Loss 0.8165 (0.5365) | acc 0.990 (0.982) | IoU 0.631 (0.608) | [7 days, 17:01:47]
Lr: 9.783e-03 | Update: 3.352e-04 mean,5.033e-04 std | Epoch: [3][190/1047] | Time 1.741 (2.256) | Data 0.606 (1.111) | Loss 0.5209 (0.5384) | acc 0.964 (0.982) | IoU 0.573 (0.608) | [7 days, 16:57:08]
Lr: 9.782e-03 | Update: 2.818e-04 mean,4.257e-04 std | Epoch: [3][200/1047] | Time 1.835 (2.256) | Data 0.730 (1.111) | Loss 0.5229 (0.5401) | acc 0.981 (0.981) | IoU 0.535 (0.605) | [7 days, 16:53:44]
Lr: 9.781e-03 | Update: 1.979e-04 mean,2.973e-04 std | Epoch: [3][210/1047] | Time 1.794 (2.255) | Data 0.651 (1.110) | Loss 0.5238 (0.5386) | acc 0.981 (0.981) | IoU 0.520 (0.606) | [7 days, 16:48:33]
Lr: 9.780e-03 | Update: 1.628e-04 mean,2.660e-04 std | Epoch: [3][220/1047] | Time 2.023 (2.254) | Data 0.892 (1.109) | Loss 0.3079 (0.5353) | acc 0.997 (0.982) | IoU 0.689 (0.607) | [7 days, 16:44:21]
Lr: 9.779e-03 | Update: 8.521e-04 mean,1.318e-03 std | Epoch: [3][230/1047] | Time 1.856 (2.253) | Data 0.708 (1.108) | Loss 0.7230 (0.5341) | acc 0.982 (0.982) | IoU 0.574 (0.609) | [7 days, 16:38:26]
Lr: 9.778e-03 | Update: 5.677e-04 mean,8.038e-04 std | Epoch: [3][240/1047] | Time 2.309 (2.252) | Data 1.202 (1.108) | Loss 0.5910 (0.5333) | acc 0.985 (0.982) | IoU 0.621 (0.611) | [7 days, 16:35:19]
Lr: 9.778e-03 | Update: 3.074e-04 mean,4.231e-04 std | Epoch: [3][250/1047] | Time 1.796 (2.252) | Data 0.639 (1.107) | Loss 0.5500 (0.5318) | acc 0.969 (0.982) | IoU 0.588 (0.610) | [7 days, 16:30:54]
Lr: 9.777e-03 | Update: 3.090e-04 mean,4.234e-04 std | Epoch: [3][260/1047] | Time 2.156 (2.251) | Data 1.042 (1.107) | Loss 0.5961 (0.5320) | acc 0.973 (0.981) | IoU 0.504 (0.608) | [7 days, 16:27:56]
Lr: 9.776e-03 | Update: 2.415e-04 mean,3.474e-04 std | Epoch: [3][270/1047] | Time 2.250 (2.250) | Data 1.052 (1.106) | Loss 0.5005 (0.5331) | acc 0.989 (0.981) | IoU 0.684 (0.608) | [7 days, 16:23:41]
Lr: 9.775e-03 | Update: 5.617e-04 mean,8.913e-04 std | Epoch: [3][280/1047] | Time 1.913 (2.250) | Data 0.841 (1.105) | Loss 0.6020 (0.5329) | acc 0.992 (0.981) | IoU 0.740 (0.609) | [7 days, 16:19:21]
Lr: 9.774e-03 | Update: 3.998e-04 mean,5.547e-04 std | Epoch: [3][290/1047] | Time 1.715 (2.249) | Data 0.655 (1.104) | Loss 0.6074 (0.5345) | acc 0.956 (0.981) | IoU 0.512 (0.610) | [7 days, 16:14:43]
Lr: 9.773e-03 | Update: 3.318e-04 mean,5.683e-04 std | Epoch: [3][300/1047] | Time 1.927 (2.248) | Data 0.751 (1.104) | Loss 0.4406 (0.5354) | acc 0.975 (0.981) | IoU 0.587 (0.608) | [7 days, 16:11:13]
Lr: 9.772e-03 | Update: 3.803e-04 mean,9.867e-04 std | Epoch: [3][310/1047] | Time 1.737 (2.247) | Data 0.582 (1.103) | Loss 0.4780 (0.5356) | acc 0.991 (0.981) | IoU 0.588 (0.608) | [7 days, 16:05:37]
Lr: 9.771e-03 | Update: 3.619e-04 mean,5.252e-04 std | Epoch: [3][320/1047] | Time 2.161 (2.247) | Data 0.906 (1.102) | Loss 0.5141 (0.5364) | acc 0.990 (0.981) | IoU 0.679 (0.609) | [7 days, 16:02:07]
Lr: 9.770e-03 | Update: 3.299e-04 mean,7.432e-04 std | Epoch: [3][330/1047] | Time 1.866 (2.246) | Data 0.734 (1.101) | Loss 0.4687 (0.5345) | acc 0.971 (0.981) | IoU 0.514 (0.611) | [7 days, 15:57:04]
Lr: 9.769e-03 | Update: 4.687e-04 mean,9.404e-04 std | Epoch: [3][340/1047] | Time 2.241 (2.245) | Data 1.145 (1.101) | Loss 0.4288 (0.5356) | acc 0.992 (0.981) | IoU 0.747 (0.611) | [7 days, 15:54:18]
Lr: 9.768e-03 | Update: 6.603e-04 mean,2.736e-03 std | Epoch: [3][350/1047] | Time 2.052 (2.244) | Data 0.989 (1.100) | Loss 0.5898 (0.5351) | acc 0.987 (0.981) | IoU 0.676 (0.612) | [7 days, 15:49:15]
Lr: 9.767e-03 | Update: 7.283e-04 mean,1.082e-03 std | Epoch: [3][360/1047] | Time 2.110 (2.244) | Data 0.858 (1.099) | Loss 0.6633 (0.5355) | acc 0.984 (0.981) | IoU 0.591 (0.612) | [7 days, 15:44:26]
Lr: 9.766e-03 | Update: 1.931e-04 mean,4.504e-04 std | Epoch: [3][370/1047] | Time 2.161 (2.243) | Data 1.173 (1.099) | Loss 0.4189 (0.5359) | acc 0.996 (0.982) | IoU 0.815 (0.613) | [7 days, 15:40:04]
Lr: 9.765e-03 | Update: 5.083e-04 mean,1.235e-03 std | Epoch: [3][380/1047] | Time 2.063 (2.242) | Data 0.982 (1.098) | Loss 0.4221 (0.5360) | acc 0.987 (0.982) | IoU 0.573 (0.614) | [7 days, 15:35:48]
Lr: 9.764e-03 | Update: 2.561e-04 mean,3.896e-04 std | Epoch: [3][390/1047] | Time 2.124 (2.241) | Data 1.130 (1.097) | Loss 0.4602 (0.5351) | acc 0.997 (0.982) | IoU 0.655 (0.614) | [7 days, 15:31:28]
Lr: 9.763e-03 | Update: 3.602e-04 mean,6.213e-04 std | Epoch: [3][400/1047] | Time 2.087 (2.241) | Data 1.078 (1.096) | Loss 0.5326 (0.5361) | acc 0.981 (0.982) | IoU 0.522 (0.615) | [7 days, 15:26:21]
Lr: 9.763e-03 | Update: 3.721e-04 mean,5.358e-04 std | Epoch: [3][410/1047] | Time 2.276 (2.240) | Data 0.987 (1.095) | Loss 0.5046 (0.5358) | acc 0.982 (0.982) | IoU 0.531 (0.614) | [7 days, 15:21:35]
Lr: 9.762e-03 | Update: 5.129e-04 mean,8.834e-04 std | Epoch: [3][420/1047] | Time 2.260 (2.239) | Data 1.173 (1.095) | Loss 0.4826 (0.5347) | acc 0.994 (0.982) | IoU 0.632 (0.615) | [7 days, 15:17:01]
Lr: 9.761e-03 | Update: 2.568e-04 mean,4.813e-04 std | Epoch: [3][430/1047] | Time 2.041 (2.238) | Data 0.867 (1.094) | Loss 0.4584 (0.5342) | acc 0.979 (0.982) | IoU 0.700 (0.617) | [7 days, 15:12:50]
Lr: 9.760e-03 | Update: 4.874e-04 mean,7.271e-04 std | Epoch: [3][440/1047] | Time 1.773 (2.237) | Data 0.668 (1.093) | Loss 0.4474 (0.5345) | acc 0.991 (0.982) | IoU 0.672 (0.615) | [7 days, 15:08:19]
Lr: 9.759e-03 | Update: 3.244e-04 mean,5.188e-04 std | Epoch: [3][450/1047] | Time 1.915 (2.237) | Data 0.791 (1.092) | Loss 0.5497 (0.5347) | acc 0.975 (0.982) | IoU 0.571 (0.615) | [7 days, 15:03:56]
Lr: 9.758e-03 | Update: 7.291e-04 mean,1.159e-03 std | Epoch: [3][460/1047] | Time 2.524 (2.236) | Data 1.547 (1.092) | Loss 0.5897 (0.5343) | acc 0.983 (0.982) | IoU 0.616 (0.615) | [7 days, 15:00:28]
Lr: 9.757e-03 | Update: 4.333e-04 mean,8.282e-04 std | Epoch: [3][470/1047] | Time 1.954 (2.235) | Data 0.754 (1.091) | Loss 0.5732 (0.5342) | acc 0.986 (0.982) | IoU 0.551 (0.615) | [7 days, 14:56:34]
Lr: 9.756e-03 | Update: 4.693e-04 mean,1.393e-03 std | Epoch: [3][480/1047] | Time 1.858 (2.235) | Data 0.800 (1.090) | Loss 0.4676 (0.5342) | acc 0.994 (0.982) | IoU 0.833 (0.615) | [7 days, 14:51:54]
Lr: 9.755e-03 | Update: 3.936e-04 mean,8.751e-04 std | Epoch: [3][490/1047] | Time 2.396 (2.234) | Data 1.216 (1.090) | Loss 0.4018 (0.5335) | acc 0.985 (0.982) | IoU 0.574 (0.615) | [7 days, 14:47:57]
Lr: 9.754e-03 | Update: 5.359e-04 mean,8.874e-04 std | Epoch: [3][500/1047] | Time 1.717 (2.233) | Data 0.607 (1.089) | Loss 0.5866 (0.5331) | acc 0.975 (0.982) | IoU 0.560 (0.616) | [7 days, 14:44:10]
Lr: 9.753e-03 | Update: 2.256e-04 mean,3.775e-04 std | Epoch: [3][510/1047] | Time 1.711 (2.233) | Data 0.608 (1.088) | Loss 0.4466 (0.5340) | acc 0.981 (0.982) | IoU 0.527 (0.615) | [7 days, 14:40:20]
Lr: 9.752e-03 | Update: 1.816e-04 mean,2.683e-04 std | Epoch: [3][520/1047] | Time 1.952 (2.232) | Data 0.770 (1.088) | Loss 0.4479 (0.5348) | acc 0.987 (0.982) | IoU 0.683 (0.616) | [7 days, 14:36:42]
Lr: 9.751e-03 | Update: 7.500e-04 mean,1.266e-03 std | Epoch: [3][530/1047] | Time 2.344 (2.232) | Data 1.277 (1.088) | Loss 0.6598 (0.5348) | acc 0.991 (0.982) | IoU 0.571 (0.615) | [7 days, 14:34:43]
Lr: 9.750e-03 | Update: 2.552e-04 mean,3.595e-04 std | Epoch: [3][540/1047] | Time 2.127 (2.231) | Data 1.121 (1.087) | Loss 0.5989 (0.5359) | acc 0.976 (0.982) | IoU 0.518 (0.615) | [7 days, 14:30:39]
Lr: 9.749e-03 | Update: 2.337e-04 mean,3.763e-04 std | Epoch: [3][550/1047] | Time 2.349 (2.230) | Data 1.310 (1.086) | Loss 0.5642 (0.5374) | acc 0.927 (0.982) | IoU 0.480 (0.614) | [7 days, 14:27:00]
Lr: 9.748e-03 | Update: 4.409e-04 mean,7.191e-04 std | Epoch: [3][560/1047] | Time 1.867 (2.230) | Data 0.759 (1.086) | Loss 0.5449 (0.5370) | acc 0.996 (0.982) | IoU 0.855 (0.615) | [7 days, 14:23:05]
Lr: 9.748e-03 | Update: 2.289e-04 mean,4.062e-04 std | Epoch: [3][570/1047] | Time 1.997 (2.229) | Data 0.926 (1.085) | Loss 0.5158 (0.5367) | acc 0.970 (0.982) | IoU 0.518 (0.614) | [7 days, 14:19:25]
Lr: 9.747e-03 | Update: 2.256e-04 mean,3.451e-04 std | Epoch: [3][580/1047] | Time 2.248 (2.229) | Data 1.145 (1.085) | Loss 0.4289 (0.5367) | acc 0.985 (0.982) | IoU 0.585 (0.615) | [7 days, 14:16:02]
Lr: 9.746e-03 | Update: 1.823e-04 mean,2.620e-04 std | Epoch: [3][590/1047] | Time 1.990 (2.228) | Data 0.978 (1.084) | Loss 0.3642 (0.5365) | acc 0.988 (0.982) | IoU 0.691 (0.615) | [7 days, 14:12:17]
Lr: 9.745e-03 | Update: 6.050e-04 mean,1.368e-03 std | Epoch: [3][600/1047] | Time 2.304 (2.227) | Data 1.185 (1.083) | Loss 0.4770 (0.5355) | acc 0.996 (0.982) | IoU 0.796 (0.616) | [7 days, 14:08:25]
Lr: 9.744e-03 | Update: 2.787e-04 mean,3.950e-04 std | Epoch: [3][610/1047] | Time 2.122 (2.227) | Data 1.062 (1.083) | Loss 0.6003 (0.5348) | acc 0.959 (0.982) | IoU 0.494 (0.617) | [7 days, 14:05:19]
Lr: 9.743e-03 | Update: 3.591e-04 mean,4.963e-04 std | Epoch: [3][620/1047] | Time 2.092 (2.226) | Data 0.956 (1.082) | Loss 0.3653 (0.5346) | acc 0.995 (0.982) | IoU 0.816 (0.618) | [7 days, 14:01:41]
Lr: 9.742e-03 | Update: 8.768e-04 mean,1.375e-03 std | Epoch: [3][630/1047] | Time 1.836 (2.226) | Data 0.688 (1.082) | Loss 0.6331 (0.5335) | acc 0.989 (0.982) | IoU 0.728 (0.619) | [7 days, 13:57:42]
Lr: 9.741e-03 | Update: 2.968e-04 mean,9.457e-04 std | Epoch: [3][640/1047] | Time 1.677 (2.225) | Data 0.598 (1.081) | Loss 0.4676 (0.5323) | acc 0.979 (0.982) | IoU 0.605 (0.619) | [7 days, 13:53:28]
Lr: 9.740e-03 | Update: 4.550e-04 mean,1.266e-03 std | Epoch: [3][650/1047] | Time 1.945 (2.224) | Data 0.897 (1.080) | Loss 0.4449 (0.5318) | acc 0.987 (0.982) | IoU 0.674 (0.619) | [7 days, 13:49:45]
Lr: 9.739e-03 | Update: 2.182e-04 mean,3.868e-04 std | Epoch: [3][660/1047] | Time 2.102 (2.224) | Data 0.938 (1.080) | Loss 0.3899 (0.5316) | acc 0.989 (0.983) | IoU 0.629 (0.620) | [7 days, 13:46:14]
Lr: 9.738e-03 | Update: 2.081e-04 mean,4.281e-04 std | Epoch: [3][670/1047] | Time 2.080 (2.223) | Data 0.970 (1.079) | Loss 0.4258 (0.5310) | acc 0.990 (0.983) | IoU 0.637 (0.619) | [7 days, 13:43:03]
Lr: 9.737e-03 | Update: 3.575e-04 mean,1.509e-03 std | Epoch: [3][680/1047] | Time 2.216 (2.223) | Data 0.988 (1.079) | Loss 0.4740 (0.5310) | acc 0.994 (0.983) | IoU 0.705 (0.620) | [7 days, 13:40:16]
Lr: 9.736e-03 | Update: 2.871e-04 mean,1.015e-03 std | Epoch: [3][690/1047] | Time 1.992 (2.222) | Data 0.920 (1.078) | Loss 0.5494 (0.5318) | acc 0.941 (0.982) | IoU 0.495 (0.618) | [7 days, 13:37:02]
Lr: 9.735e-03 | Update: 5.273e-04 mean,1.215e-03 std | Epoch: [3][700/1047] | Time 1.799 (2.221) | Data 0.692 (1.077) | Loss 0.5683 (0.5316) | acc 0.992 (0.982) | IoU 0.624 (0.618) | [7 days, 13:33:05]
Lr: 9.734e-03 | Update: 3.204e-04 mean,1.439e-03 std | Epoch: [3][710/1047] | Time 2.083 (2.221) | Data 0.792 (1.077) | Loss 0.5562 (0.5312) | acc 0.984 (0.982) | IoU 0.615 (0.618) | [7 days, 13:29:04]
Lr: 9.733e-03 | Update: 7.754e-04 mean,2.320e-03 std | Epoch: [3][720/1047] | Time 1.930 (2.220) | Data 0.702 (1.076) | Loss 0.6014 (0.5306) | acc 0.994 (0.982) | IoU 0.602 (0.620) | [7 days, 13:25:24]
Lr: 9.733e-03 | Update: 5.115e-04 mean,9.507e-04 std | Epoch: [3][730/1047] | Time 2.300 (2.220) | Data 1.136 (1.076) | Loss 0.6103 (0.5304) | acc 0.975 (0.982) | IoU 0.595 (0.620) | [7 days, 13:23:16]
Lr: 9.732e-03 | Update: 9.304e-04 mean,1.738e-03 std | Epoch: [3][740/1047] | Time 2.122 (2.219) | Data 0.854 (1.075) | Loss 0.6873 (0.5297) | acc 0.989 (0.982) | IoU 0.693 (0.620) | [7 days, 13:19:53]
Lr: 9.731e-03 | Update: 7.912e-04 mean,6.322e-03 std | Epoch: [3][750/1047] | Time 1.996 (2.219) | Data 0.906 (1.075) | Loss 0.5796 (0.5309) | acc 0.969 (0.982) | IoU 0.554 (0.620) | [7 days, 13:16:52]
Lr: 9.730e-03 | Update: 2.519e-04 mean,1.160e-03 std | Epoch: [3][760/1047] | Time 2.102 (2.218) | Data 0.924 (1.074) | Loss 0.4265 (0.5305) | acc 0.993 (0.982) | IoU 0.596 (0.619) | [7 days, 13:13:38]
Lr: 9.729e-03 | Update: 6.046e-04 mean,9.555e-04 std | Epoch: [3][770/1047] | Time 1.850 (2.218) | Data 0.730 (1.074) | Loss 0.6389 (0.5311) | acc 0.987 (0.982) | IoU 0.742 (0.620) | [7 days, 13:10:35]
Lr: 9.728e-03 | Update: 2.827e-04 mean,4.301e-04 std | Epoch: [3][780/1047] | Time 1.989 (2.217) | Data 0.787 (1.073) | Loss 0.3655 (0.5304) | acc 0.985 (0.982) | IoU 0.675 (0.620) | [7 days, 13:07:23]
Lr: 9.727e-03 | Update: 1.173e-03 mean,2.412e-03 std | Epoch: [3][790/1047] | Time 2.157 (2.217) | Data 1.019 (1.073) | Loss 0.7535 (0.5317) | acc 0.983 (0.982) | IoU 0.707 (0.619) | [7 days, 13:05:36]
Lr: 9.726e-03 | Update: 2.200e-04 mean,3.800e-04 std | Epoch: [3][800/1047] | Time 2.052 (2.217) | Data 0.894 (1.073) | Loss 0.4345 (0.5317) | acc 0.982 (0.982) | IoU 0.576 (0.619) | [7 days, 13:03:11]
Lr: 9.725e-03 | Update: 1.825e-04 mean,2.921e-04 std | Epoch: [3][810/1047] | Time 2.101 (2.216) | Data 0.771 (1.072) | Loss 0.4201 (0.5320) | acc 0.993 (0.982) | IoU 0.563 (0.619) | [7 days, 13:00:39]
Lr: 9.724e-03 | Update: 4.435e-04 mean,2.692e-03 std | Epoch: [3][820/1047] | Time 2.213 (2.216) | Data 0.948 (1.072) | Loss 0.4940 (0.5317) | acc 0.989 (0.982) | IoU 0.682 (0.619) | [7 days, 12:58:24]
Lr: 9.723e-03 | Update: 3.909e-04 mean,2.772e-03 std | Epoch: [3][830/1047] | Time 2.385 (2.216) | Data 1.232 (1.072) | Loss 0.4965 (0.5314) | acc 0.992 (0.982) | IoU 0.680 (0.619) | [7 days, 12:57:01]
Lr: 9.722e-03 | Update: 3.212e-04 mean,5.312e-04 std | Epoch: [3][840/1047] | Time 1.993 (2.215) | Data 0.931 (1.071) | Loss 0.5639 (0.5316) | acc 0.984 (0.983) | IoU 0.687 (0.619) | [7 days, 12:54:29]
Lr: 9.721e-03 | Update: 2.252e-04 mean,4.337e-04 std | Epoch: [3][850/1047] | Time 2.363 (2.215) | Data 1.131 (1.071) | Loss 0.4774 (0.5318) | acc 0.981 (0.982) | IoU 0.532 (0.619) | [7 days, 12:53:25]
Lr: 9.720e-03 | Update: 2.507e-04 mean,8.882e-04 std | Epoch: [3][860/1047] | Time 1.795 (2.215) | Data 0.677 (1.071) | Loss 0.4698 (0.5317) | acc 0.997 (0.983) | IoU 0.812 (0.619) | [7 days, 12:51:26]
Lr: 9.719e-03 | Update: 2.353e-04 mean,9.835e-04 std | Epoch: [3][870/1047] | Time 2.282 (2.215) | Data 1.131 (1.071) | Loss 0.3869 (0.5306) | acc 0.998 (0.983) | IoU 0.785 (0.621) | [7 days, 12:50:10]
Lr: 9.719e-03 | Update: 4.326e-04 mean,8.740e-04 std | Epoch: [3][880/1047] | Time 2.050 (2.215) | Data 1.050 (1.070) | Loss 0.6500 (0.5311) | acc 0.978 (0.983) | IoU 0.545 (0.621) | [7 days, 12:47:23]
Lr: 9.718e-03 | Update: 3.512e-04 mean,1.912e-03 std | Epoch: [3][890/1047] | Time 1.875 (2.214) | Data 0.852 (1.070) | Loss 0.4652 (0.5307) | acc 0.971 (0.983) | IoU 0.579 (0.620) | [7 days, 12:45:04]
Lr: 9.717e-03 | Update: 7.114e-04 mean,6.770e-03 std | Epoch: [3][900/1047] | Time 1.968 (2.214) | Data 0.887 (1.070) | Loss 0.4206 (0.5305) | acc 0.996 (0.983) | IoU 0.734 (0.620) | [7 days, 12:43:43]
Lr: 9.716e-03 | Update: 1.189e-03 mean,3.030e-03 std | Epoch: [3][910/1047] | Time 1.769 (2.214) | Data 0.627 (1.069) | Loss 0.7551 (0.5300) | acc 0.977 (0.983) | IoU 0.514 (0.621) | [7 days, 12:41:44]
Lr: 9.715e-03 | Update: 4.493e-04 mean,2.384e-03 std | Epoch: [3][920/1047] | Time 2.362 (2.214) | Data 1.309 (1.070) | Loss 0.4035 (0.5296) | acc 0.996 (0.983) | IoU 0.739 (0.621) | [7 days, 12:41:21]
Lr: 9.714e-03 | Update: 2.313e-04 mean,3.613e-04 std | Epoch: [3][930/1047] | Time 2.139 (2.214) | Data 0.897 (1.069) | Loss 0.4852 (0.5294) | acc 0.991 (0.983) | IoU 0.561 (0.622) | [7 days, 12:40:21]
Lr: 9.713e-03 | Update: 9.208e-04 mean,3.023e-03 std | Epoch: [3][940/1047] | Time 2.195 (2.214) | Data 1.010 (1.069) | Loss 0.6028 (0.5296) | acc 0.974 (0.983) | IoU 0.577 (0.622) | [7 days, 12:38:24]
Lr: 9.712e-03 | Update: 3.297e-04 mean,1.346e-03 std | Epoch: [3][950/1047] | Time 2.100 (2.214) | Data 0.996 (1.069) | Loss 0.4020 (0.5296) | acc 0.998 (0.983) | IoU 0.882 (0.622) | [7 days, 12:37:53]
Lr: 9.711e-03 | Update: 2.827e-04 mean,4.881e-04 std | Epoch: [3][960/1047] | Time 2.139 (2.213) | Data 0.959 (1.069) | Loss 0.5431 (0.5303) | acc 0.951 (0.983) | IoU 0.483 (0.622) | [7 days, 12:36:19]
Lr: 9.710e-03 | Update: 1.970e-03 mean,6.581e-03 std | Epoch: [3][970/1047] | Time 1.956 (2.213) | Data 0.717 (1.069) | Loss 0.7916 (0.5303) | acc 0.987 (0.983) | IoU 0.613 (0.621) | [7 days, 12:34:48]
Lr: 9.709e-03 | Update: 8.624e-04 mean,6.192e-03 std | Epoch: [3][980/1047] | Time 2.314 (2.213) | Data 1.017 (1.068) | Loss 0.6677 (0.5300) | acc 0.980 (0.983) | IoU 0.526 (0.621) | [7 days, 12:33:30]
Lr: 9.708e-03 | Update: 1.925e-02 mean,3.685e-01 std | Epoch: [3][990/1047] | Time 1.961 (2.213) | Data 0.804 (1.068) | Loss 0.5366 (0.5307) | acc 0.979 (0.983) | IoU 0.540 (0.621) | [7 days, 12:32:52]
Lr: 9.707e-03 | Update: 3.198e-04 mean,4.814e-04 std | Epoch: [3][1000/1047] | Time 2.086 (2.213) | Data 0.959 (1.068) | Loss 0.5425 (0.5306) | acc 0.986 (0.983) | IoU 0.529 (0.621) | [7 days, 12:30:55]
Lr: 9.706e-03 | Update: 1.181e-04 mean,2.420e-04 std | Epoch: [3][1010/1047] | Time 2.259 (2.213) | Data 1.052 (1.068) | Loss 0.3732 (0.5305) | acc 0.996 (0.983) | IoU 0.816 (0.621) | [7 days, 12:30:44]
Lr: 9.706e-03 | Update: 3.094e-04 mean,6.237e-04 std | Epoch: [3][1020/1047] | Time 2.112 (2.213) | Data 0.957 (1.068) | Loss 0.6100 (0.5306) | acc 0.979 (0.983) | IoU 0.506 (0.622) | [7 days, 12:30:41]
Lr: 9.705e-03 | Update: 5.776e-04 mean,8.948e-04 std | Epoch: [3][1030/1047] | Time 2.194 (2.213) | Data 1.019 (1.068) | Loss 0.5599 (0.5303) | acc 0.988 (0.983) | IoU 0.658 (0.622) | [7 days, 12:29:26]
Lr: 9.704e-03 | Update: 4.823e-04 mean,6.858e-04 std | Epoch: [3][1040/1047] | Time 2.284 (2.213) | Data 1.100 (1.068) | Loss 0.5914 (0.5295) | acc 0.990 (0.983) | IoU 0.663 (0.622) | [7 days, 12:29:38]
Best mean iou in training set so far, save model!
Validation:: 100%|████████████████████████████| 508/508 [12:38<00:00, 1.49s/it]
********************************************************************************
Validation set:
Time avg per batch 1.862
Loss avg 0.4427
Jaccard avg 0.2673
WCE avg 0.1753
Acc avg 0.982607
IoU avg 0.564428
IoU class 0 [unlabeled] = 0.000000
IoU class 1 [static] = 0.982555
IoU class 2 [moving] = 0.146301
********************************************************************************
Lr: 9.703e-03 | Update: 3.961e-04 mean,1.863e-03 std | Epoch: [4][0/1047] | Time 1.768 (2.213) | Data 0.599 (1.068) | Loss 0.6463 (0.6463) | acc 0.954 (0.954) | IoU 0.480 (0.480) | [7 days, 9:40:30]
Lr: 9.702e-03 | Update: 2.115e-04 mean,4.134e-04 std | Epoch: [4][10/1047] | Time 2.184 (2.213) | Data 0.942 (1.068) | Loss 0.5510 (0.5529) | acc 0.960 (0.953) | IoU 0.534 (0.533) | [7 days, 9:38:37]
Lr: 9.701e-03 | Update: 3.978e-04 mean,1.165e-03 std | Epoch: [4][20/1047] | Time 2.197 (2.212) | Data 1.082 (1.068) | Loss 0.5317 (0.5511) | acc 0.990 (0.965) | IoU 0.580 (0.564) | [7 days, 9:36:13]
Lr: 9.700e-03 | Update: 2.977e-04 mean,1.577e-03 std | Epoch: [4][30/1047] | Time 2.253 (2.212) | Data 1.132 (1.067) | Loss 0.4496 (0.5401) | acc 0.994 (0.974) | IoU 0.700 (0.598) | [7 days, 9:33:40]
Lr: 9.699e-03 | Update: 3.292e-04 mean,1.373e-03 std | Epoch: [4][40/1047] | Time 1.962 (2.211) | Data 0.883 (1.067) | Loss 0.5206 (0.5256) | acc 0.980 (0.976) | IoU 0.523 (0.598) | [7 days, 9:30:45]
Lr: 9.698e-03 | Update: 3.630e-04 mean,9.636e-04 std | Epoch: [4][50/1047] | Time 2.033 (2.211) | Data 0.970 (1.066) | Loss 0.4992 (0.5168) | acc 0.976 (0.979) | IoU 0.540 (0.622) | [7 days, 9:27:53]
Lr: 9.697e-03 | Update: 4.473e-04 mean,3.720e-03 std | Epoch: [4][60/1047] | Time 2.243 (2.211) | Data 1.093 (1.066) | Loss 0.4191 (0.5128) | acc 0.994 (0.980) | IoU 0.628 (0.624) | [7 days, 9:25:20]
Lr: 9.696e-03 | Update: 4.709e-04 mean,1.119e-03 std | Epoch: [4][70/1047] | Time 2.006 (2.210) | Data 0.914 (1.065) | Loss 0.5927 (0.5263) | acc 0.982 (0.981) | IoU 0.710 (0.623) | [7 days, 9:22:51]
Lr: 9.696e-03 | Update: 3.359e-04 mean,1.837e-03 std | Epoch: [4][80/1047] | Time 1.948 (2.210) | Data 0.887 (1.065) | Loss 0.4118 (0.5311) | acc 0.953 (0.976) | IoU 0.591 (0.610) | [7 days, 9:20:20]
Lr: 9.695e-03 | Update: 5.346e-04 mean,1.387e-03 std | Epoch: [4][90/1047] | Time 2.096 (2.210) | Data 0.775 (1.065) | Loss 0.5551 (0.5350) | acc 0.989 (0.975) | IoU 0.782 (0.607) | [7 days, 9:18:38]
Lr: 9.694e-03 | Update: 5.087e-04 mean,1.008e-03 std | Epoch: [4][100/1047] | Time 1.946 (2.209) | Data 0.841 (1.064) | Loss 0.4723 (0.5271) | acc 0.989 (0.976) | IoU 0.718 (0.613) | [7 days, 9:15:52]
Lr: 9.693e-03 | Update: 4.740e-04 mean,3.148e-03 std | Epoch: [4][110/1047] | Time 2.304 (2.209) | Data 1.154 (1.064) | Loss 0.3969 (0.5217) | acc 0.987 (0.977) | IoU 0.633 (0.616) | [7 days, 9:14:00]
Lr: 9.692e-03 | Update: 2.007e-03 mean,2.321e-02 std | Epoch: [4][120/1047] | Time 1.852 (2.209) | Data 0.619 (1.064) | Loss 0.5922 (0.5229) | acc 0.998 (0.978) | IoU 0.696 (0.616) | [7 days, 9:12:13]
Lr: 9.691e-03 | Update: 4.207e-04 mean,8.630e-04 std | Epoch: [4][130/1047] | Time 2.030 (2.209) | Data 0.772 (1.064) | Loss 0.5038 (0.5181) | acc 0.992 (0.979) | IoU 0.600 (0.618) | [7 days, 9:10:33]
Lr: 9.690e-03 | Update: 5.247e-04 mean,4.613e-03 std | Epoch: [4][140/1047] | Time 2.175 (2.208) | Data 0.891 (1.063) | Loss 0.4335 (0.5156) | acc 0.982 (0.980) | IoU 0.523 (0.624) | [7 days, 9:07:49]
Lr: 9.689e-03 | Update: 5.526e-04 mean,5.104e-03 std | Epoch: [4][150/1047] | Time 2.350 (2.208) | Data 1.231 (1.063) | Loss 0.4549 (0.5106) | acc 0.977 (0.980) | IoU 0.654 (0.630) | [7 days, 9:05:54]
Lr: 9.688e-03 | Update: 9.248e-04 mean,8.237e-03 std | Epoch: [4][160/1047] | Time 2.162 (2.208) | Data 0.843 (1.063) | Loss 0.5884 (0.5144) | acc 0.983 (0.980) | IoU 0.564 (0.626) | [7 days, 9:03:46]
Lr: 9.687e-03 | Update: 5.169e-03 mean,7.377e-02 std | Epoch: [4][170/1047] | Time 2.177 (2.207) | Data 0.960 (1.062) | Loss 0.8142 (0.5163) | acc 0.992 (0.981) | IoU 0.798 (0.628) | [7 days, 9:00:59]
Lr: 9.686e-03 | Update: 1.825e-03 mean,2.508e-02 std | Epoch: [4][180/1047] | Time 2.222 (2.207) | Data 1.084 (1.062) | Loss 0.6210 (0.5152) | acc 0.973 (0.981) | IoU 0.505 (0.630) | [7 days, 8:58:31]
Lr: 9.685e-03 | Update: 8.755e-04 mean,4.471e-03 std | Epoch: [4][190/1047] | Time 2.362 (2.206) | Data 1.216 (1.061) | Loss 0.6294 (0.5144) | acc 0.992 (0.982) | IoU 0.792 (0.635) | [7 days, 8:56:01]
Lr: 9.684e-03 | Update: 3.301e-04 mean,9.818e-04 std | Epoch: [4][200/1047] | Time 2.049 (2.206) | Data 0.730 (1.061) | Loss 0.4828 (0.5118) | acc 0.988 (0.982) | IoU 0.585 (0.635) | [7 days, 8:53:44]
Lr: 9.683e-03 | Update: 7.042e-04 mean,5.814e-03 std | Epoch: [4][210/1047] | Time 2.224 (2.206) | Data 1.109 (1.061) | Loss 0.5619 (0.5133) | acc 0.962 (0.982) | IoU 0.521 (0.634) | [7 days, 8:51:28]
Lr: 9.683e-03 | Update: 1.014e-03 mean,1.564e-02 std | Epoch: [4][220/1047] | Time 2.218 (2.205) | Data 1.023 (1.060) | Loss 0.4523 (0.5120) | acc 0.990 (0.982) | IoU 0.678 (0.636) | [7 days, 8:49:09]
Lr: 9.682e-03 | Update: 2.823e-04 mean,1.214e-03 std | Epoch: [4][230/1047] | Time 2.065 (2.205) | Data 0.900 (1.060) | Loss 0.4262 (0.5116) | acc 0.986 (0.982) | IoU 0.604 (0.636) | [7 days, 8:46:36]
Lr: 9.681e-03 | Update: 3.110e-04 mean,4.882e-04 std | Epoch: [4][240/1047] | Time 2.241 (2.205) | Data 1.197 (1.060) | Loss 0.4328 (0.5093) | acc 0.990 (0.983) | IoU 0.531 (0.637) | [7 days, 8:44:37]
Lr: 9.680e-03 | Update: 2.261e-04 mean,3.471e-04 std | Epoch: [4][250/1047] | Time 1.834 (2.204) | Data 0.623 (1.059) | Loss 0.4283 (0.5079) | acc 0.988 (0.983) | IoU 0.614 (0.637) | [7 days, 8:42:09]
Lr: 9.679e-03 | Update: 5.991e-04 mean,1.485e-03 std | Epoch: [4][260/1047] | Time 1.783 (2.204) | Data 0.690 (1.059) | Loss 0.4824 (0.5089) | acc 0.993 (0.983) | IoU 0.841 (0.636) | [7 days, 8:39:42]
Lr: 9.678e-03 | Update: 6.473e-04 mean,2.559e-03 std | Epoch: [4][270/1047] | Time 2.176 (2.204) | Data 0.947 (1.059) | Loss 0.7600 (0.5095) | acc 0.982 (0.983) | IoU 0.689 (0.637) | [7 days, 8:38:06]
Lr: 9.677e-03 | Update: 3.938e-04 mean,8.063e-04 std | Epoch: [4][280/1047] | Time 1.918 (2.203) | Data 0.760 (1.058) | Loss 0.4227 (0.5091) | acc 0.997 (0.983) | IoU 0.831 (0.638) | [7 days, 8:34:42]
Lr: 9.676e-03 | Update: 5.323e-04 mean,6.093e-03 std | Epoch: [4][290/1047] | Time 2.085 (2.203) | Data 0.803 (1.058) | Loss 0.4241 (0.5089) | acc 0.984 (0.983) | IoU 0.671 (0.639) | [7 days, 8:32:51]
Lr: 9.675e-03 | Update: 4.684e-04 mean,2.547e-03 std | Epoch: [4][300/1047] | Time 2.233 (2.203) | Data 1.015 (1.057) | Loss 0.4789 (0.5080) | acc 0.996 (0.984) | IoU 0.613 (0.638) | [7 days, 8:30:53]
Lr: 9.674e-03 | Update: 9.827e-04 mean,1.974e-03 std | Epoch: [4][310/1047] | Time 2.106 (2.203) | Data 0.860 (1.057) | Loss 0.4681 (0.5058) | acc 0.993 (0.984) | IoU 0.643 (0.642) | [7 days, 8:28:54]
Lr: 9.673e-03 | Update: 4.016e-04 mean,1.703e-03 std | Epoch: [4][320/1047] | Time 1.970 (2.202) | Data 0.778 (1.057) | Loss 0.4684 (0.5062) | acc 0.975 (0.984) | IoU 0.546 (0.641) | [7 days, 8:26:17]
Lr: 9.672e-03 | Update: 4.190e-04 mean,3.231e-03 std | Epoch: [4][330/1047] | Time 1.988 (2.202) | Data 0.788 (1.056) | Loss 0.4701 (0.5054) | acc 0.984 (0.984) | IoU 0.608 (0.641) | [7 days, 8:23:36]
Lr: 9.671e-03 | Update: 3.687e-03 mean,5.433e-02 std | Epoch: [4][340/1047] | Time 2.129 (2.201) | Data 0.972 (1.056) | Loss 0.6540 (0.5057) | acc 0.995 (0.984) | IoU 0.867 (0.641) | [7 days, 8:21:56]
Lr: 9.670e-03 | Update: 5.936e-04 mean,2.864e-03 std | Epoch: [4][350/1047] | Time 2.136 (2.201) | Data 1.090 (1.056) | Loss 0.5147 (0.5072) | acc 0.970 (0.984) | IoU 0.554 (0.640) | [7 days, 8:19:14]
Lr: 9.670e-03 | Update: 6.477e-04 mean,3.493e-03 std | Epoch: [4][360/1047] | Time 1.692 (2.201) | Data 0.624 (1.055) | Loss 0.3886 (0.5058) | acc 0.995 (0.984) | IoU 0.639 (0.639) | [7 days, 8:16:34]
Lr: 9.669e-03 | Update: 4.901e-04 mean,5.754e-03 std | Epoch: [4][370/1047] | Time 2.055 (2.201) | Data 0.941 (1.055) | Loss 0.5777 (0.5049) | acc 0.981 (0.984) | IoU 0.513 (0.643) | [7 days, 8:16:04]
Lr: 9.668e-03 | Update: 5.408e-04 mean,4.009e-03 std | Epoch: [4][380/1047] | Time 2.271 (2.201) | Data 1.055 (1.055) | Loss 0.5583 (0.5066) | acc 0.976 (0.984) | IoU 0.573 (0.642) | [7 days, 8:15:55]
Lr: 9.667e-03 | Update: 1.191e-03 mean,8.411e-03 std | Epoch: [4][390/1047] | Time 2.337 (2.201) | Data 1.190 (1.055) | Loss 0.6176 (0.5089) | acc 0.975 (0.984) | IoU 0.518 (0.639) | [7 days, 8:15:06]
Lr: 9.666e-03 | Update: 3.736e-04 mean,6.192e-04 std | Epoch: [4][400/1047] | Time 2.369 (2.201) | Data 1.228 (1.055) | Loss 0.5691 (0.5110) | acc 0.980 (0.984) | IoU 0.506 (0.638) | [7 days, 8:15:19]
Lr: 9.665e-03 | Update: 8.837e-04 mean,2.263e-03 std | Epoch: [4][410/1047] | Time 2.063 (2.201) | Data 0.832 (1.055) | Loss 0.6738 (0.5109) | acc 0.990 (0.984) | IoU 0.698 (0.639) | [7 days, 8:14:58]
Lr: 9.664e-03 | Update: 6.341e-04 mean,9.480e-04 std | Epoch: [4][420/1047] | Time 2.315 (2.201) | Data 1.111 (1.055) | Loss 0.4891 (0.5107) | acc 0.989 (0.984) | IoU 0.661 (0.639) | [7 days, 8:13:42]
Lr: 9.663e-03 | Update: 4.354e-04 mean,6.077e-04 std | Epoch: [4][430/1047] | Time 2.212 (2.201) | Data 1.120 (1.055) | Loss 0.5504 (0.5102) | acc 0.983 (0.984) | IoU 0.552 (0.638) | [7 days, 8:13:21]
Lr: 9.662e-03 | Update: 7.972e-04 mean,2.226e-03 std | Epoch: [4][440/1047] | Time 2.356 (2.201) | Data 1.219 (1.055) | Loss 0.5779 (0.5099) | acc 0.989 (0.984) | IoU 0.747 (0.639) | [7 days, 8:12:16]
Lr: 9.661e-03 | Update: 4.062e-04 mean,6.306e-04 std | Epoch: [4][450/1047] | Time 2.297 (2.201) | Data 1.068 (1.055) | Loss 0.5839 (0.5109) | acc 0.957 (0.984) | IoU 0.572 (0.638) | [7 days, 8:10:36]
Lr: 9.660e-03 | Update: 3.506e-04 mean,6.005e-04 std | Epoch: [4][460/1047] | Time 2.380 (2.201) | Data 1.265 (1.054) | Loss 0.7395 (0.5123) | acc 0.974 (0.983) | IoU 0.542 (0.636) | [7 days, 8:09:35]
Lr: 9.659e-03 | Update: 2.849e-04 mean,1.004e-03 std | Epoch: [4][470/1047] | Time 2.225 (2.201) | Data 0.958 (1.054) | Loss 0.2925 (0.5119) | acc 0.987 (0.983) | IoU 0.739 (0.637) | [7 days, 8:08:47]
Lr: 9.658e-03 | Update: 9.289e-04 mean,3.888e-03 std | Epoch: [4][480/1047] | Time 2.608 (2.201) | Data 1.317 (1.054) | Loss 0.4846 (0.5119) | acc 0.990 (0.983) | IoU 0.725 (0.636) | [7 days, 8:08:22]
Lr: 9.657e-03 | Update: 3.176e-04 mean,5.405e-04 std | Epoch: [4][490/1047] | Time 2.521 (2.201) | Data 1.137 (1.054) | Loss 0.5632 (0.5119) | acc 0.997 (0.984) | IoU 0.811 (0.636) | [7 days, 8:08:08]
Lr: 9.657e-03 | Update: 5.482e-04 mean,8.310e-04 std | Epoch: [4][500/1047] | Time 2.146 (2.201) | Data 1.038 (1.054) | Loss 0.6815 (0.5115) | acc 0.984 (0.984) | IoU 0.525 (0.638) | [7 days, 8:07:21]
Lr: 9.656e-03 | Update: 1.812e-04 mean,3.267e-04 std | Epoch: [4][510/1047] | Time 2.345 (2.201) | Data 1.049 (1.054) | Loss 0.3615 (0.5114) | acc 0.997 (0.984) | IoU 0.891 (0.638) | [7 days, 8:05:50]
Lr: 9.655e-03 | Update: 2.406e-04 mean,3.466e-04 std | Epoch: [4][520/1047] | Time 2.167 (2.201) | Data 1.044 (1.054) | Loss 0.4227 (0.5112) | acc 0.989 (0.984) | IoU 0.587 (0.639) | [7 days, 8:04:22]
Lr: 9.654e-03 | Update: 7.979e-04 mean,2.519e-03 std | Epoch: [4][530/1047] | Time 2.713 (2.201) | Data 1.378 (1.054) | Loss 0.5466 (0.5106) | acc 0.987 (0.984) | IoU 0.637 (0.639) | [7 days, 8:04:09]
Lr: 9.653e-03 | Update: 4.523e-04 mean,8.184e-04 std | Epoch: [4][540/1047] | Time 2.273 (2.201) | Data 1.045 (1.054) | Loss 0.3582 (0.5092) | acc 0.997 (0.984) | IoU 0.806 (0.640) | [7 days, 8:04:18]
Lr: 9.652e-03 | Update: 2.037e-04 mean,4.462e-04 std | Epoch: [4][550/1047] | Time 2.142 (2.201) | Data 0.912 (1.053) | Loss 0.3378 (0.5099) | acc 0.994 (0.984) | IoU 0.727 (0.641) | [7 days, 8:03:08]
Lr: 9.651e-03 | Update: 2.635e-04 mean,4.114e-04 std | Epoch: [4][560/1047] | Time 1.687 (2.201) | Data 0.660 (1.053) | Loss 0.5710 (0.5111) | acc 0.950 (0.984) | IoU 0.488 (0.639) | [7 days, 7:59:18]
Lr: 9.650e-03 | Update: 3.195e-04 mean,5.124e-04 std | Epoch: [4][570/1047] | Time 1.988 (2.200) | Data 0.848 (1.053) | Loss 0.5615 (0.5109) | acc 0.997 (0.984) | IoU 0.717 (0.639) | [7 days, 7:57:51]
Lr: 9.649e-03 | Update: 3.413e-04 mean,1.203e-03 std | Epoch: [4][580/1047] | Time 1.884 (2.200) | Data 0.742 (1.052) | Loss 0.4625 (0.5116) | acc 0.986 (0.984) | IoU 0.633 (0.638) | [7 days, 7:55:49]
Lr: 9.648e-03 | Update: 2.174e-04 mean,3.079e-04 std | Epoch: [4][590/1047] | Time 2.191 (2.200) | Data 1.012 (1.052) | Loss 0.3856 (0.5103) | acc 0.993 (0.984) | IoU 0.550 (0.639) | [7 days, 7:55:58]
Lr: 9.647e-03 | Update: 2.541e-04 mean,4.392e-04 std | Epoch: [4][600/1047] | Time 2.173 (2.200) | Data 1.146 (1.052) | Loss 0.4171 (0.5104) | acc 0.980 (0.984) | IoU 0.571 (0.640) | [7 days, 7:54:09]
Lr: 9.646e-03 | Update: 6.908e-04 mean,1.074e-03 std | Epoch: [4][610/1047] | Time 1.940 (2.200) | Data 0.777 (1.052) | Loss 0.8926 (0.5115) | acc 0.961 (0.984) | IoU 0.488 (0.638) | [7 days, 7:52:13]
Lr: 9.645e-03 | Update: 6.206e-04 mean,1.361e-03 std | Epoch: [4][620/1047] | Time 2.087 (2.200) | Data 0.957 (1.052) | Loss 0.7251 (0.5121) | acc 0.989 (0.984) | IoU 0.744 (0.638) | [7 days, 7:51:19]
Lr: 9.644e-03 | Update: 2.504e-04 mean,3.300e-04 std | Epoch: [4][630/1047] | Time 1.839 (2.200) | Data 0.741 (1.052) | Loss 0.4294 (0.5115) | acc 0.996 (0.984) | IoU 0.738 (0.639) | [7 days, 7:49:55]
Lr: 9.644e-03 | Update: 9.789e-04 mean,4.966e-03 std | Epoch: [4][640/1047] | Time 1.652 (2.199) | Data 0.580 (1.051) | Loss 0.5926 (0.5115) | acc 0.990 (0.984) | IoU 0.765 (0.639) | [7 days, 7:47:20]
Lr: 9.643e-03 | Update: 7.252e-04 mean,1.000e-03 std | Epoch: [4][650/1047] | Time 2.186 (2.199) | Data 0.991 (1.051) | Loss 0.7553 (0.5115) | acc 0.972 (0.984) | IoU 0.511 (0.638) | [7 days, 7:46:43]
Lr: 9.642e-03 | Update: 1.449e-04 mean,3.116e-04 std | Epoch: [4][660/1047] | Time 2.050 (2.199) | Data 0.975 (1.051) | Loss 0.2995 (0.5111) | acc 0.998 (0.984) | IoU 0.897 (0.638) | [7 days, 7:44:21]
Lr: 9.641e-03 | Update: 6.957e-04 mean,1.134e-03 std | Epoch: [4][670/1047] | Time 1.875 (2.198) | Data 0.704 (1.050) | Loss 0.5098 (0.5100) | acc 0.994 (0.984) | IoU 0.766 (0.640) | [7 days, 7:42:08]
Lr: 9.640e-03 | Update: 2.088e-04 mean,4.734e-04 std | Epoch: [4][680/1047] | Time 2.251 (2.198) | Data 1.174 (1.050) | Loss 0.5361 (0.5101) | acc 0.987 (0.984) | IoU 0.538 (0.639) | [7 days, 7:40:49]
Lr: 9.639e-03 | Update: 3.550e-04 mean,5.378e-04 std | Epoch: [4][690/1047] | Time 1.936 (2.198) | Data 0.913 (1.050) | Loss 0.6219 (0.5101) | acc 0.983 (0.984) | IoU 0.531 (0.640) | [7 days, 7:38:48]
Lr: 9.638e-03 | Update: 5.017e-04 mean,9.949e-04 std | Epoch: [4][700/1047] | Time 2.163 (2.198) | Data 1.064 (1.050) | Loss 0.5524 (0.5102) | acc 0.981 (0.984) | IoU 0.572 (0.640) | [7 days, 7:37:33]
Lr: 9.637e-03 | Update: 2.351e-04 mean,3.336e-04 std | Epoch: [4][710/1047] | Time 2.147 (2.198) | Data 1.071 (1.050) | Loss 0.5276 (0.5103) | acc 0.984 (0.984) | IoU 0.623 (0.640) | [7 days, 7:35:33]
Lr: 9.636e-03 | Update: 2.879e-04 mean,3.937e-04 std | Epoch: [4][720/1047] | Time 1.822 (2.197) | Data 0.672 (1.049) | Loss 0.5667 (0.5099) | acc 0.991 (0.985) | IoU 0.534 (0.640) | [7 days, 7:33:31]
Lr: 9.635e-03 | Update: 3.896e-04 mean,1.304e-03 std | Epoch: [4][730/1047] | Time 1.963 (2.197) | Data 0.782 (1.049) | Loss 0.4252 (0.5096) | acc 0.997 (0.985) | IoU 0.679 (0.640) | [7 days, 7:32:04]
Lr: 9.634e-03 | Update: 3.090e-04 mean,8.384e-04 std | Epoch: [4][740/1047] | Time 2.277 (2.197) | Data 1.147 (1.049) | Loss 0.4079 (0.5094) | acc 0.997 (0.985) | IoU 0.866 (0.641) | [7 days, 7:30:43]
Lr: 9.633e-03 | Update: 1.096e-03 mean,9.060e-03 std | Epoch: [4][750/1047] | Time 2.030 (2.197) | Data 0.997 (1.049) | Loss 0.5042 (0.5092) | acc 0.988 (0.985) | IoU 0.667 (0.641) | [7 days, 7:28:18]
Lr: 9.632e-03 | Update: 3.396e-04 mean,1.695e-03 std | Epoch: [4][760/1047] | Time 1.967 (2.196) | Data 0.733 (1.048) | Loss 0.4182 (0.5090) | acc 0.994 (0.985) | IoU 0.625 (0.641) | [7 days, 7:26:20]
Lr: 9.632e-03 | Update: 4.849e-04 mean,1.877e-03 std | Epoch: [4][770/1047] | Time 2.093 (2.196) | Data 0.926 (1.048) | Loss 0.6426 (0.5093) | acc 0.992 (0.985) | IoU 0.589 (0.642) | [7 days, 7:24:27]
Lr: 9.631e-03 | Update: 3.503e-04 mean,6.121e-04 std | Epoch: [4][780/1047] | Time 2.047 (2.196) | Data 0.708 (1.048) | Loss 0.5450 (0.5089) | acc 0.986 (0.985) | IoU 0.530 (0.642) | [7 days, 7:22:37]
Lr: 9.630e-03 | Update: 2.624e-04 mean,1.095e-03 std | Epoch: [4][790/1047] | Time 2.242 (2.196) | Data 0.937 (1.047) | Loss 0.4608 (0.5092) | acc 0.990 (0.985) | IoU 0.626 (0.642) | [7 days, 7:21:01]
Lr: 9.629e-03 | Update: 3.205e-04 mean,1.772e-03 std | Epoch: [4][800/1047] | Time 2.135 (2.195) | Data 1.002 (1.047) | Loss 0.3903 (0.5089) | acc 0.995 (0.985) | IoU 0.659 (0.641) | [7 days, 7:18:33]
Lr: 9.628e-03 | Update: 2.979e-04 mean,7.278e-04 std | Epoch: [4][810/1047] | Time 2.184 (2.195) | Data 1.138 (1.047) | Loss 0.4513 (0.5081) | acc 0.994 (0.985) | IoU 0.618 (0.642) | [7 days, 7:16:20]
Lr: 9.627e-03 | Update: 1.366e-04 mean,2.531e-04 std | Epoch: [4][820/1047] | Time 2.265 (2.195) | Data 0.999 (1.046) | Loss 0.2740 (0.5076) | acc 0.999 (0.985) | IoU 0.878 (0.643) | [7 days, 7:14:25]
Lr: 9.626e-03 | Update: 4.809e-04 mean,1.246e-03 std | Epoch: [4][830/1047] | Time 2.107 (2.195) | Data 1.001 (1.046) | Loss 0.3954 (0.5075) | acc 0.997 (0.985) | IoU 0.867 (0.643) | [7 days, 7:12:48]
Lr: 9.625e-03 | Update: 1.631e-04 mean,2.636e-04 std | Epoch: [4][840/1047] | Time 2.318 (2.194) | Data 1.248 (1.046) | Loss 0.6162 (0.5077) | acc 0.960 (0.985) | IoU 0.484 (0.643) | [7 days, 7:10:00]
Lr: 9.624e-03 | Update: 3.290e-04 mean,6.160e-04 std | Epoch: [4][850/1047] | Time 2.006 (2.194) | Data 0.894 (1.046) | Loss 0.4959 (0.5079) | acc 0.995 (0.985) | IoU 0.707 (0.642) | [7 days, 7:08:07]
Lr: 9.623e-03 | Update: 4.540e-04 mean,8.986e-04 std | Epoch: [4][860/1047] | Time 2.237 (2.194) | Data 0.869 (1.045) | Loss 0.3868 (0.5076) | acc 0.996 (0.985) | IoU 0.814 (0.643) | [7 days, 7:06:45]
Lr: 9.622e-03 | Update: 2.762e-04 mean,5.601e-04 std | Epoch: [4][870/1047] | Time 2.235 (2.193) | Data 1.230 (1.045) | Loss 0.3861 (0.5065) | acc 0.995 (0.985) | IoU 0.706 (0.643) | [7 days, 7:05:23]
Lr: 9.621e-03 | Update: 3.662e-04 mean,6.076e-04 std | Epoch: [4][880/1047] | Time 2.299 (2.193) | Data 1.177 (1.045) | Loss 0.4688 (0.5058) | acc 0.989 (0.986) | IoU 0.571 (0.644) | [7 days, 7:03:08]
Lr: 9.620e-03 | Update: 3.963e-04 mean,5.627e-04 std | Epoch: [4][890/1047] | Time 2.093 (2.193) | Data 1.028 (1.045) | Loss 0.5378 (0.5063) | acc 0.972 (0.986) | IoU 0.534 (0.643) | [7 days, 7:01:05]
Lr: 9.620e-03 | Update: 7.183e-04 mean,3.608e-03 std | Epoch: [4][900/1047] | Time 1.948 (2.193) | Data 0.806 (1.044) | Loss 0.6768 (0.5067) | acc 0.982 (0.985) | IoU 0.542 (0.643) | [7 days, 6:59:16]
Lr: 9.619e-03 | Update: 2.070e-04 mean,3.327e-04 std | Epoch: [4][910/1047] | Time 2.019 (2.192) | Data 0.764 (1.044) | Loss 0.3758 (0.5066) | acc 0.994 (0.986) | IoU 0.652 (0.643) | [7 days, 6:57:34]
Lr: 9.618e-03 | Update: 5.240e-04 mean,2.144e-03 std | Epoch: [4][920/1047] | Time 2.272 (2.192) | Data 1.212 (1.044) | Loss 0.4448 (0.5067) | acc 0.988 (0.986) | IoU 0.615 (0.643) | [7 days, 6:56:24]
Lr: 9.617e-03 | Update: 9.009e-04 mean,9.457e-03 std | Epoch: [4][930/1047] | Time 2.128 (2.192) | Data 1.088 (1.044) | Loss 0.5084 (0.5061) | acc 0.993 (0.986) | IoU 0.688 (0.643) | [7 days, 6:54:07]
Lr: 9.616e-03 | Update: 2.608e-04 mean,6.322e-04 std | Epoch: [4][940/1047] | Time 2.092 (2.192) | Data 0.835 (1.043) | Loss 0.3983 (0.5057) | acc 0.992 (0.986) | IoU 0.639 (0.643) | [7 days, 6:52:23]
Lr: 9.615e-03 | Update: 1.123e-03 mean,4.338e-03 std | Epoch: [4][950/1047] | Time 2.013 (2.192) | Data 0.903 (1.043) | Loss 0.9113 (0.5059) | acc 0.978 (0.986) | IoU 0.540 (0.643) | [7 days, 6:50:53]
Lr: 9.614e-03 | Update: 2.835e-04 mean,1.598e-03 std | Epoch: [4][960/1047] | Time 2.166 (2.191) | Data 1.105 (1.043) | Loss 0.4732 (0.5061) | acc 0.990 (0.986) | IoU 0.559 (0.643) | [7 days, 6:48:58]
Lr: 9.613e-03 | Update: 3.397e-04 mean,1.105e-03 std | Epoch: [4][970/1047] | Time 2.321 (2.191) | Data 1.061 (1.043) | Loss 0.4939 (0.5052) | acc 0.996 (0.986) | IoU 0.691 (0.643) | [7 days, 6:48:08]
Lr: 9.612e-03 | Update: 3.893e-04 mean,1.787e-03 std | Epoch: [4][980/1047] | Time 2.236 (2.191) | Data 1.128 (1.042) | Loss 0.3857 (0.5040) | acc 0.997 (0.986) | IoU 0.917 (0.645) | [7 days, 6:46:18]
Lr: 9.611e-03 | Update: 2.880e-04 mean,4.466e-04 std | Epoch: [4][990/1047] | Time 1.661 (2.191) | Data 0.615 (1.042) | Loss 0.3574 (0.5033) | acc 0.991 (0.986) | IoU 0.706 (0.645) | [7 days, 6:44:20]
Lr: 9.610e-03 | Update: 2.977e-04 mean,6.836e-04 std | Epoch: [4][1000/1047] | Time 1.910 (2.191) | Data 0.734 (1.042) | Loss 0.4845 (0.5031) | acc 0.988 (0.986) | IoU 0.544 (0.645) | [7 days, 6:42:46]
Lr: 9.609e-03 | Update: 5.303e-04 mean,1.439e-03 std | Epoch: [4][1010/1047] | Time 2.065 (2.190) | Data 0.896 (1.042) | Loss 0.4403 (0.5028) | acc 0.996 (0.986) | IoU 0.868 (0.646) | [7 days, 6:40:51]
Lr: 9.608e-03 | Update: 2.216e-04 mean,9.197e-04 std | Epoch: [4][1020/1047] | Time 2.084 (2.190) | Data 0.928 (1.041) | Loss 0.3274 (0.5026) | acc 0.985 (0.986) | IoU 0.634 (0.645) | [7 days, 6:39:00]
Lr: 9.608e-03 | Update: 4.243e-04 mean,8.205e-04 std | Epoch: [4][1030/1047] | Time 2.185 (2.190) | Data 0.835 (1.041) | Loss 0.4356 (0.5027) | acc 0.997 (0.986) | IoU 0.871 (0.645) | [7 days, 6:37:22]
Lr: 9.607e-03 | Update: 2.915e-04 mean,7.807e-04 std | Epoch: [4][1040/1047] | Time 2.109 (2.190) | Data 1.069 (1.041) | Loss 0.4633 (0.5033) | acc 0.990 (0.986) | IoU 0.597 (0.645) | [7 days, 6:36:02]
Best mean iou in training set so far, save model!
Validation:: 100%|████████████████████████████| 508/508 [11:49<00:00, 1.40s/it]
********************************************************************************
Validation set:
Time avg per batch 1.769
Loss avg 1.4384
Jaccard avg 0.5764
WCE avg 0.8620
Acc avg 0.691302
IoU avg 0.350770
IoU class 0 [unlabeled] = 0.000000
IoU class 1 [static] = 0.690206
IoU class 2 [moving] = 0.011333
********************************************************************************
Lr: 9.606e-03 | Update: 4.164e-04 mean,9.854e-04 std | Epoch: [5][0/1047] | Time 1.770 (2.189) | Data 0.540 (1.041) | Loss 0.5355 (0.5355) | acc 0.986 (0.986) | IoU 0.601 (0.601) | [7 days, 4:24:26]
Lr: 9.605e-03 | Update: 2.432e-04 mean,4.918e-04 std | Epoch: [5][10/1047] | Time 2.132 (2.189) | Data 1.110 (1.040) | Loss 0.6028 (0.5228) | acc 0.983 (0.987) | IoU 0.521 (0.626) | [7 days, 4:22:00]
Lr: 9.604e-03 | Update: 1.339e-04 mean,2.131e-04 std | Epoch: [5][20/1047] | Time 2.259 (2.189) | Data 1.113 (1.040) | Loss 0.3681 (0.4944) | acc 0.998 (0.990) | IoU 0.796 (0.659) | [7 days, 4:20:18]
Lr: 9.603e-03 | Update: 5.042e-04 mean,7.548e-04 std | Epoch: [5][30/1047] | Time 2.165 (2.189) | Data 0.986 (1.040) | Loss 0.4550 (0.4827) | acc 0.996 (0.992) | IoU 0.707 (0.682) | [7 days, 4:18:33]
Lr: 9.602e-03 | Update: 6.915e-04 mean,1.591e-03 std | Epoch: [5][40/1047] | Time 1.755 (2.188) | Data 0.663 (1.040) | Loss 0.6817 (0.4760) | acc 0.994 (0.992) | IoU 0.733 (0.689) | [7 days, 4:16:00]
Lr: 9.601e-03 | Update: 7.513e-04 mean,9.719e-03 std | Epoch: [5][50/1047] | Time 2.243 (2.188) | Data 1.112 (1.039) | Loss 0.2761 (0.4599) | acc 0.997 (0.993) | IoU 0.624 (0.691) | [7 days, 4:13:50]
Lr: 9.600e-03 | Update: 1.684e-04 mean,2.438e-04 std | Epoch: [5][60/1047] | Time 2.142 (2.187) | Data 0.948 (1.039) | Loss 0.3875 (0.4573) | acc 0.988 (0.992) | IoU 0.582 (0.695) | [7 days, 4:10:58]
Lr: 9.600e-03 | Update: 4.722e-04 mean,1.972e-03 std | Epoch: [5][70/1047] | Time 1.910 (2.187) | Data 0.746 (1.039) | Loss 0.4500 (0.4568) | acc 0.992 (0.992) | IoU 0.757 (0.697) | [7 days, 4:08:42]
Lr: 9.599e-03 | Update: 3.893e-04 mean,5.540e-04 std | Epoch: [5][80/1047] | Time 1.879 (2.186) | Data 0.864 (1.038) | Loss 0.4514 (0.4662) | acc 0.988 (0.991) | IoU 0.547 (0.683) | [7 days, 4:05:40]
Lr: 9.598e-03 | Update: 1.114e-04 mean,2.453e-04 std | Epoch: [5][90/1047] | Time 1.780 (2.186) | Data 0.612 (1.038) | Loss 0.2699 (0.4657) | acc 0.995 (0.991) | IoU 0.755 (0.682) | [7 days, 4:03:02]
Lr: 9.597e-03 | Update: 4.185e-04 mean,1.024e-03 std | Epoch: [5][100/1047] | Time 1.813 (2.186) | Data 0.697 (1.037) | Loss 0.4434 (0.4657) | acc 0.994 (0.991) | IoU 0.756 (0.684) | [7 days, 4:00:21]
|
I have found this problem. When I disable the softpool, the net will be train normal. My sofrpool version is 1.1. MotionSeg3D/modules/SalsaNextWithMotionAttention.py Lines 161 to 167 in dc4c95f
donw2b will be Nan, and this will cause down3b become Nan, finally the output will become Nan.
|
Hi, glad to hear this. I check the softpool version in my pc, it is also 1.1 $ git clone https://github.com/alexandrosstergiou/SoftPool.git
$ cd SoftPool-master/pytorch
$ make install
--- (optional) ---
$ make test Another quick test is to use the checkpoint I provided, inference on your machine, perform eval to see if the result metric is normal, and visualize the results of MOS. byw, softpool did not appear |
As for this issue, the dim of in_vol is [bs, channel, h, w]. The channel numer is |
Thank you for your reply. I think my data is ok. I try it with SalasNext and SalsaNextWithMotionAttention without softpool, they work well. |
Hi @fengluodb, if Iyou are very sure that it is a softpool problem, you can refer to alexandrosstergiou/SoftPool#12 and alexandrosstergiou/adaPool#2. I have tested it on 4~5 different types of GPU servers, and I have not found this issue in nearly a hundred experiments. Thank you for your feedback! |
@fengluodb Can you tell me which version of python, pytorch, cuda, cudnn you are using? |
My create conda enviroment as readme. My cuda version is 11.4. I don't know the cudnn version. As for softpool, the test output is following. output log
--- Initial checks for forward ---
--- Initial checks for backward ---
TESTS COMPLETED --- Profiling checks ---
Self CPU time total: 44.654ms SoftPool1d (CPU) [forward + backward]
Self CPU time total: 164.672ms SoftPool1d (CUDA-inplace) [foward]
Self CPU time total: 52.938ms SoftPool1d (CUDA-inplace) [forward + backward]
Self CPU time total: 292.102ms SoftPool1d (CUDA) [foward]
Self CPU time total: 79.006ms SoftPool1d (CUDA) [forward + backward]
Self CPU time total: 81.088ms SoftPool2d (CPU) [foward]
Self CPU time total: 290.420ms SoftPool2d (CPU) [forward + backward]
Self CPU time total: 789.392ms SoftPool2d (CUDA-inplace) [foward]
Self CPU time total: 33.740ms SoftPool2d (CUDA-inplace) [forward + backward]
Self CPU time total: 189.949ms SoftPool2d (CUDA) [foward]
Self CPU time total: 20.667ms SoftPool2d (CUDA) [forward + backward]
Self CPU time total: 147.192ms SoftPool3d (CPU) [foward]
Self CPU time total: 2.669s SoftPool3d (CPU) [forward + backward]
Self CPU time total: 7.919s SoftPool3d (CUDA-inplace) [foward]
Self CPU time total: 108.232ms SoftPool3d (CUDA-inplace) [forward + backward]
Self CPU time total: 273.574ms SoftPool3d (CUDA) [foward]
Self CPU time total: 247.073ms SoftPool3d (CUDA) [forward + backward]
Self CPU time total: 130.912ms SoftPool1d [forward + backward] ----------- C P U ------------ -- C U D A - I N P L A C E --- ---------- C U D A ----------- SoftPool2d [forward + backward] ----------- C P U ------------ -- C U D A - I N P L A C E --- ---------- C U D A ----------- SoftPool3d [forward + backward] ----------- C P U ------------ -- C U D A - I N P L A C E --- ---------- C U D A ----------- --- Tests finished --- |
If the training is done with mixed precision (amp), nan may be caused by numerical overflow. |
Hi, I also encountered this problem
I just use SemanticKitti dataset and my running recommand is My environment is following: Pytorch version meets the requirements, while the training loss is still nan. |
Hi @Terminal-K @fengluodb @huixiancheng , I finally found the cause of this problem! When I use the new version The specific reason may need to carefully check the softpool code and discuss with the author, but rolling back the softpool version is a quick solution to this problem. git clone https://github.com/alexandrosstergiou/SoftPool.git
cd SoftPool
git checkout 2d2ec6d # rollback to 2d2ec6dca10b7683ffd41061a27910d67816bfa5
cd pytorch
make install
--- (optional) ---
make test If you have any questions, please contact me again. |
Thanks for your patience, i'll try it again:) |
I train the net from scratch as the redeme said. However, after 5 epoch, the loss is always nan, acc is 0, iou is 0.
The text was updated successfully, but these errors were encountered: