-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathedwards_proj.py
199 lines (137 loc) · 4.46 KB
/
edwards_proj.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
from finitefield.finitefield import FiniteField
q = 0x73eda753299d7d483339d80809a1d80553bda402fffe5bfeffffffff00000001
Fq = FiniteField(q, 1)
# Twisted Edwards Curve
class ProjectiveEdwards(object):
def __init__(self, a, d):
self.a = a
self.d = d
self.disc = a * d * (a - d) * (a - d) * (a - d) * (a - d)
self.j = 16 * (a * a + 14 * a * d + d * d) * (a * a + 14 * a * d + d * d) * \
(a * a + 14 * a * d + d * d) / self.disc
if not self.isSmooth():
raise Exception("The curve %s is not smooth!" % self)
def isSmooth(self):
return self.disc != 0
def testPoint(self, x, y):
return self.a * x * x + y*y == 1 + self.d * x * x * y * y
def __str__(self):
# return '%sx^2 + y^2 = 1 + %sx^2y^2' % (self.a, self.d)
return "Projective: "
def __repr__(self):
return str(self)
def __eq__(self, other):
return (self.a, self.d) == (other.a, other.d)
class Point(object):
def __init__(self, curve, x, y):
self.curve = curve # the curve containing this point
self.x = x
self.y = y
if not curve.testPoint(x,y):
raise Exception("The point %s is not on the given curve %s!" % (self, curve))
def __str__(self):
return "(%r, %r)" % (self.x, self.y)
def __repr__(self):
return str(self)
def __neg__(self):
return Point(self.curve, -self.x, self.y)
def __add__(self, Q):
# Assumptions: Z1=1 and Z2=1.
# Cost: 6M + 1S + 1*a + 1*d + 8add.
# source 2008 Bernstein--Birkner--Joye--Lange--Peters http://eprint.iacr.org/2008/013 Section 6, plus Z2=1, plus Z1=1, plus standard simplification
# assume Z1 = 1, Z2 = 1
# compute C = X1 X2
# D = Y1 Y2
# E = d C D
# X3 = (1-E) ((X1+Y1)(X2+Y2)-C-D)
# Y3 = (1+E) (D-a C)
# Z3 = 1-E^2
if self.curve != Q.curve:
raise Exception("Can't add points on different curves!")
if isinstance(Q, Ideal):
return self
x1, y1, z1 = self.x, self.y, 1
x2, y2, z2 = Q.x, Q.y, 1
c = x1 * x2
d = y1 * y2
e = self.curve.d * c * d
x3 = (1 - e) * ((x1 + y1) * (x2 + y2) - c - d)
y3 = (1 + e) * (d + c)
z3 = 1 - e * e
return Point(self.curve, x3/z3, y3/z3)
def double(self):
# Assumptions: Z1=1.
# Cost: 2M + 4S + 1*a + 7add + 1*2.
# https://hyperelliptic.org/EFD/g1p/auto-twisted-projective.html#doubling-mdbl-2008-bbjlp
# assume Z1 = 1
# compute B = (X1+Y1)^2
# C = X1^2
# D = Y1^2
# E = a C = -C
# F = E + D
# X3 = (B-C-D)(F-2)
# Y3 = F(E-D)
# Z3 = F^2-2F
x1, y1, z1 = self.x, self.y, 1
b = (x1 + y1) * (x1 + y1)
c = x1 * x1
d = y1 * y1
e = -c
f = e + d
x3 = (b - c - d) * (f - 2)
y3 = f * (e - d)
z3 = f * f - 2 * f
X3 = x3*(Fq(z3).inverse())
Y3 = y3*(Fq(z3).inverse())
return Point(self.curve, X3, Y3)
# return Point(self.curve, x3/z3, y3/z3)
# return self + self
def __sub__(self, Q):
return self + -Q
def __mul__(self, n):
if not isinstance(n, int):
raise Exception("Can't scale a point by something which isn't an int!")
if n < 0:
return -self * -n
if n == 0:
return Ideal(self.curve)
Q = self
R = self if n & 1 == 1 else Ideal(self.curve)
i = 2
while i <= n:
Q += Q
if n & i == i:
R += Q
i = i << 1
return R
def __rmul__(self, n):
return self * n
def __list__(self):
return [self.x, self.y]
def __eq__(self, other):
if type(other) is Ideal:
return False
return self.x, self.y == other.x, other.y
def __ne__(self, other):
return not self == other
def __getitem__(self, index):
return [self.x, self.y][index]
# TODO?
class Ideal(Point):
def __init__(self, curve):
self.curve = curve
def __neg__(self):
return self
def __str__(self):
return "Ideal"
def __add__(self, Q):
if self.curve != Q.curve:
raise Exception("Can't add points on different curves!")
return Q
def __mul__(self, n):
if not isinstance(n, int):
raise Exception("Can't scale a point by something which isn't an int!")
else:
return self
def __eq__(self, other):
return type(other) is Ideal