The virtcontainers 1.0 API operates on two high level objects: Sandboxes and containers:
The virtcontainers 1.0 sandbox API manages hardware virtualized sandbox lifecycles. The virtcontainers sandbox semantics strictly follow the Kubernetes ones.
The sandbox API allows callers to create, delete, start, stop, run, pause, resume and list VM (Virtual Machine) based sandboxes.
To initially create a sandbox, the API caller must prepare a
SandboxConfig
and pass it to either CreateSandbox
or RunSandbox
. Upon successful sandbox creation, the virtcontainers
API will return a VCSandbox
interface back to the caller.
The VCSandbox
interface is a sandbox abstraction hiding the internal and private
virtcontainers sandbox structure. It is a handle for API callers to manage the
sandbox lifecycle through the rest of the sandbox API.
// SandboxConfig is a Sandbox configuration.
type SandboxConfig struct {
ID string
Hostname string
// Field specific to OCI specs, needed to setup all the hooks
Hooks Hooks
// VMConfig is the VM configuration to set for this sandbox.
VMConfig Resources
HypervisorType HypervisorType
HypervisorConfig HypervisorConfig
AgentType AgentType
AgentConfig interface{}
ProxyType ProxyType
ProxyConfig ProxyConfig
ShimType ShimType
ShimConfig interface{}
NetworkConfig NetworkConfig
// Volumes is a list of shared volumes between the host and the Sandbox.
Volumes []Volume
// Containers describe the list of containers within a Sandbox.
// This list can be empty and populated by adding containers
// to the Sandbox a posteriori.
Containers []ContainerConfig
// Annotations keys must be unique strings and must be name-spaced
// with e.g. reverse domain notation (org.clearlinux.key).
Annotations map[string]string
}
// Resources describes VM resources configuration.
type Resources struct {
// VCPUs is the number of available virtual CPUs.
VCPUs uint
// Memory is the amount of available memory in MiB.
Memory uint
}
// HypervisorType describes an hypervisor type.
type HypervisorType string
const (
// QemuHypervisor is the QEMU hypervisor.
QemuHypervisor HypervisorType = "qemu"
// MockHypervisor is a mock hypervisor for testing purposes
MockHypervisor HypervisorType = "mock"
)
// HypervisorConfig is the hypervisor configuration.
type HypervisorConfig struct {
// KernelPath is the guest kernel host path.
KernelPath string
// ImagePath is the guest image host path.
ImagePath string
// FirmwarePath is the bios host path
FirmwarePath string
// MachineAccelerators are machine specific accelerators
MachineAccelerators string
// HypervisorPath is the hypervisor executable host path.
HypervisorPath string
// DisableBlockDeviceUse disallows a block device from being used.
DisableBlockDeviceUse bool
// Shared file system type:
// - virtio-9p (default)
// - virtio-fs
SharedFS string
// VirtioFSDaemon is the virtio-fs vhost-user daemon path
VirtioFSDaemon string
// VirtioFSCacheSize is the virtio-fs DAX cache size in MiB
VirtioFSCacheSize uint32
// VirtioFSCache cache mode for fs version cache or "none"
VirtioFSCache string
// KernelParams are additional guest kernel parameters.
KernelParams []Param
// HypervisorParams are additional hypervisor parameters.
HypervisorParams []Param
// HypervisorMachineType specifies the type of machine being
// emulated.
HypervisorMachineType string
// Debug changes the default hypervisor and kernel parameters to
// enable debug output where available.
Debug bool
// NumVCPUs specifies default number of vCPUs for the VM.
// Sandbox configuration VMConfig.VCPUs overwrites this.
NumVCPUs uint32
// DefaultMem specifies default memory size in MiB for the VM.
// Sandbox configuration VMConfig.Memory overwrites this.
MemorySize uint32
// DefaultBridges specifies default number of bridges for the VM.
// Bridges can be used to hot plug devices
DefaultBridges uint32
// MemPrealloc specifies if the memory should be pre-allocated
MemPrealloc bool
// HugePages specifies if the memory should be pre-allocated from huge pages
HugePages bool
// Realtime Used to enable/disable realtime
Realtime bool
// Mlock is used to control memory locking when Realtime is enabled
// Realtime=true and Mlock=false, allows for swapping out of VM memory
// enabling higher density
Mlock bool
// DisableNestingChecks is used to override customizations performed
// when running on top of another VMM.
DisableNestingChecks bool
}
// AgentType describes the type of guest agent a Sandbox should run.
type AgentType string
const (
// NoopAgentType is the No-Op agent.
NoopAgentType AgentType = "noop"
// KataContainersAgent is the Kata Containers agent.
KataContainersAgent AgentType = "kata"
// SocketTypeVSOCK is a VSOCK socket type for talking to an agent.
SocketTypeVSOCK = "vsock"
// SocketTypeUNIX is a UNIX socket type for talking to an agent.
// It typically means the agent is living behind a host proxy.
SocketTypeUNIX = "unix"
)
// ProxyType describes a proxy type.
type ProxyType string
const (
// NoopProxyType is the noopProxy.
NoopProxyType ProxyType = "noopProxy"
// NoProxyType is the noProxy.
NoProxyType ProxyType = "noProxy"
// KataProxyType is the kataProxy.
KataProxyType ProxyType = "kataProxy"
)
// ProxyConfig is a structure storing information needed from any
// proxy in order to be properly initialized.
type ProxyConfig struct {
Path string
Debug bool
}
// ShimType describes a shim type.
type ShimType string
const (
// NoopShimType is the noopShim.
NoopShimType ShimType = "noopShim"
// KataShimType is the Kata Containers shim type.
KataShimType ShimType = "kataShim"
)
// NetworkConfig is the network configuration related to a network.
type NetworkConfig struct {
NetNSPath string
InterworkingModel NetInterworkingModel
}
// NetInterworkingModel defines the network model connecting
// the network interface to the virtual machine.
type NetInterworkingModel int
const (
// NetXConnectDefaultModel Ask to use DefaultNetInterworkingModel
NetXConnectDefaultModel NetInterworkingModel = iota
// NetXConnectMacVtapModel can be used when the Container network
// interface can be bridged using macvtap
NetXConnectMacVtapModel
// NetXConnectInvalidModel is the last item to check valid values by IsValid()
NetXConnectInvalidModel
)
// Volume is a shared volume between the host and the VM,
// defined by its mount tag and its host path.
type Volume struct {
// MountTag is a label used as a hint to the guest.
MountTag string
// HostPath is the host filesystem path for this volume.
HostPath string
}
// ContainerConfig describes one container runtime configuration.
type ContainerConfig struct {
ID string
// RootFs is the container workload image on the host.
RootFs string
// ReadOnlyRootfs indicates if the rootfs should be mounted readonly
ReadonlyRootfs bool
// Cmd specifies the command to run on a container
Cmd Cmd
// Annotations allow clients to store arbitrary values,
// for example to add additional status values required
// to support particular specifications.
Annotations map[string]string
Mounts []Mount
// Device configuration for devices that must be available within the container.
DeviceInfos []DeviceInfo
}
// Cmd represents a command to execute in a running container.
type Cmd struct {
Args []string
Envs []EnvVar
WorkDir string
// Note that these fields *MUST* remain as strings.
//
// The reason being that we want runtimes to be able to support CLI
// operations like "exec --user=". That option allows the
// specification of a user (either as a string username or a numeric
// UID), and may optionally also include a group (groupame or GID).
//
// Since this type is the interface to allow the runtime to specify
// the user and group the workload can run as, these user and group
// fields cannot be encoded as integer values since that would imply
// the runtime itself would need to perform a UID/GID lookup on the
// user-specified username/groupname. But that isn't practically
// possible given that to do so would require the runtime to access
// the image to allow it to interrogate the appropriate databases to
// convert the username/groupnames to UID/GID values.
//
// Note that this argument applies solely to the _runtime_ supporting
// a "--user=" option when running in a "standalone mode" - there is
// no issue when the runtime is called by a container manager since
// all the user and group mapping is handled by the container manager
// and specified to the runtime in terms of UID/GID's in the
// configuration file generated by the container manager.
User string
PrimaryGroup string
SupplementaryGroups []string
Interactive bool
Console string
Detach bool
NoNewPrivileges bool
Capabilities LinuxCapabilities
}
// Mount describes a container mount.
type Mount struct {
Source string
Destination string
// Type specifies the type of filesystem to mount.
Type string
// Options list all the mount options of the filesystem.
Options []string
// HostPath used to store host side bind mount path
HostPath string
// ReadOnly specifies if the mount should be read only or not
ReadOnly bool
}
// DeviceInfo is an embedded type that contains device data common to all types of devices.
type DeviceInfo struct {
// Device path on host
HostPath string
// Device path inside the container
ContainerPath string
// Type of device: c, b, u or p
// c , u - character(unbuffered)
// p - FIFO
// b - block(buffered) special file
// More info in mknod(1).
DevType string
// Major, minor numbers for device.
Major int64
Minor int64
// FileMode permission bits for the device.
FileMode os.FileMode
// id of the device owner.
UID uint32
// id of the device group.
GID uint32
// Hotplugged is used to store device state indicating if the
// device was hotplugged.
Hotplugged bool
// ID for the device that is passed to the hypervisor.
ID string
}
// VCSandbox is the Sandbox interface
// (required since virtcontainers.Sandbox only contains private fields)
type VCSandbox interface {
Annotations(key string) (string, error)
GetAllContainers() []VCContainer
GetAnnotations() map[string]string
GetContainer(containerID string) VCContainer
ID() string
SetAnnotations(annotations map[string]string) error
}
CreateSandbox
DeleteSandbox
StartSandbox
StopSandbox
RunSandbox
ListSandbox
StatusSandbox
PauseSandbox
ResumeSandbox
// CreateSandbox is the virtcontainers sandbox creation entry point.
// CreateSandbox creates a sandbox and its containers. It does not start them.
func CreateSandbox(sandboxConfig SandboxConfig) (VCSandbox, error)
// DeleteSandbox is the virtcontainers sandbox deletion entry point.
// DeleteSandbox will stop an already running container and then delete it.
func DeleteSandbox(sandboxID string) (VCSandbox, error)
// StartSandbox is the virtcontainers sandbox starting entry point.
// StartSandbox will talk to the given hypervisor to start an existing
// sandbox and all its containers.
func StartSandbox(sandboxID string) (VCSandbox, error)
// StopSandbox is the virtcontainers sandbox stopping entry point.
// StopSandbox will talk to the given agent to stop an existing sandbox
// and destroy all containers within that sandbox.
func StopSandbox(sandboxID string) (VCSandbox, error)
// RunSandbox is the virtcontainers sandbox running entry point.
// RunSandbox creates a sandbox and its containers and then it starts them.
func RunSandbox(sandboxConfig SandboxConfig) (VCSandbox, error)
// ListSandbox is the virtcontainers sandbox listing entry point.
func ListSandbox() ([]SandboxStatus, error)
// StatusSandbox is the virtcontainers sandbox status entry point.
func StatusSandbox(sandboxID string) (SandboxStatus, error)
// PauseSandbox is the virtcontainers pausing entry point which pauses an
// already running sandbox.
func PauseSandbox(sandboxID string) (VCSandbox, error)
// ResumeSandbox is the virtcontainers resuming entry point which resumes
// (or unpauses) and already paused sandbox.
func ResumeSandbox(sandboxID string) (VCSandbox, error)
The virtcontainers 1.0 container API manages sandbox container lifecycles.
A virtcontainers container is process running inside a containerized environment, as part of a hardware virtualized context. In other words, a virtcontainers container is just a regular container running inside a virtual machine's guest OS.
A virtcontainers container always belong to one and only one virtcontainers sandbox, again following the Kubernetes. logic and semantics.
The container API allows callers to create, delete, start, stop, kill and observe containers. It also allows for running additional processes inside a specific container.
As a virtcontainers container is always linked to a sandbox, the entire container API always takes a sandbox ID as its first argument.
To create a container, the API caller must prepare a
ContainerConfig
and pass it to
CreateContainer
together with a sandbox ID. Upon successful
container creation, the virtcontainers API will return a
VCContainer
interface back to the caller.
The VCContainer
interface is a container abstraction hiding the internal
and private virtcontainers container structure. It is a handle for API callers
to manage the container lifecycle through the rest of the
container API.
// ContainerConfig describes one container runtime configuration.
type ContainerConfig struct {
ID string
// RootFs is the container workload image on the host.
RootFs string
// ReadOnlyRootfs indicates if the rootfs should be mounted readonly
ReadonlyRootfs bool
// Cmd specifies the command to run on a container
Cmd Cmd
// Annotations allow clients to store arbitrary values,
// for example to add additional status values required
// to support particular specifications.
Annotations map[string]string
Mounts []Mount
// Device configuration for devices that must be available within the container.
DeviceInfos []DeviceInfo
}
// Cmd represents a command to execute in a running container.
type Cmd struct {
Args []string
Envs []EnvVar
WorkDir string
// Note that these fields *MUST* remain as strings.
//
// The reason being that we want runtimes to be able to support CLI
// operations like "exec --user=". That option allows the
// specification of a user (either as a string username or a numeric
// UID), and may optionally also include a group (groupame or GID).
//
// Since this type is the interface to allow the runtime to specify
// the user and group the workload can run as, these user and group
// fields cannot be encoded as integer values since that would imply
// the runtime itself would need to perform a UID/GID lookup on the
// user-specified username/groupname. But that isn't practically
// possible given that to do so would require the runtime to access
// the image to allow it to interrogate the appropriate databases to
// convert the username/groupnames to UID/GID values.
//
// Note that this argument applies solely to the _runtime_ supporting
// a "--user=" option when running in a "standalone mode" - there is
// no issue when the runtime is called by a container manager since
// all the user and group mapping is handled by the container manager
// and specified to the runtime in terms of UID/GID's in the
// configuration file generated by the container manager.
User string
PrimaryGroup string
SupplementaryGroups []string
Interactive bool
Console string
Detach bool
NoNewPrivileges bool
Capabilities LinuxCapabilities
}
// Mount describes a container mount.
type Mount struct {
Source string
Destination string
// Type specifies the type of filesystem to mount.
Type string
// Options list all the mount options of the filesystem.
Options []string
// HostPath used to store host side bind mount path
HostPath string
// ReadOnly specifies if the mount should be read only or not
ReadOnly bool
}
// DeviceInfo is an embedded type that contains device data common to all types of devices.
type DeviceInfo struct {
// Device path on host
HostPath string
// Device path inside the container
ContainerPath string
// Type of device: c, b, u or p
// c , u - character(unbuffered)
// p - FIFO
// b - block(buffered) special file
// More info in mknod(1).
DevType string
// Major, minor numbers for device.
Major int64
Minor int64
// FileMode permission bits for the device.
FileMode os.FileMode
// id of the device owner.
UID uint32
// id of the device group.
GID uint32
// Hotplugged is used to store device state indicating if the
// device was hotplugged.
Hotplugged bool
// ID for the device that is passed to the hypervisor.
ID string
}
// Process gathers data related to a container process.
type Process struct {
// Token is the process execution context ID. It must be
// unique per sandbox.
// Token is used to manipulate processes for containers
// that have not started yet, and later identify them
// uniquely within a sandbox.
Token string
// Pid is the process ID as seen by the host software
// stack, e.g. CRI-O, containerd. This is typically the
// shim PID.
Pid int
StartTime time.Time
}
// ContainerStatus describes a container status.
type ContainerStatus struct {
ID string
State State
PID int
StartTime time.Time
RootFs string
// Annotations allow clients to store arbitrary values,
// for example to add additional status values required
// to support particular specifications.
Annotations map[string]string
}
// ProcessListOptions contains the options used to list running
// processes inside the container
type ProcessListOptions struct {
// Format describes the output format to list the running processes.
// Formats are unrelated to ps(1) formats, only two formats can be specified:
// "json" and "table"
Format string
// Args contains the list of arguments to run ps(1) command.
// If Args is empty the agent will use "-ef" as options to ps(1).
Args []string
}
// VCContainer is the Container interface
// (required since virtcontainers.Container only contains private fields)
type VCContainer interface {
GetAnnotations() map[string]string
GetPid() int
GetToken() string
ID() string
Sandbox() VCSandbox
Process() Process
}
CreateContainer
DeleteContainer
StartContainer
StopContainer
EnterContainer
StatusContainer
KillContainer
ProcessListContainer
// CreateContainer is the virtcontainers container creation entry point.
// CreateContainer creates a container on a given sandbox.
func CreateContainer(sandboxID string, containerConfig ContainerConfig) (VCSandbox, VCContainer, error)
// DeleteContainer is the virtcontainers container deletion entry point.
// DeleteContainer deletes a Container from a Sandbox. If the container is running,
// it needs to be stopped first.
func DeleteContainer(sandboxID, containerID string) (VCContainer, error)
// StartContainer is the virtcontainers container starting entry point.
// StartContainer starts an already created container.
func StartContainer(sandboxID, containerID string) (VCContainer, error)
// StopContainer is the virtcontainers container stopping entry point.
// StopContainer stops an already running container.
func StopContainer(sandboxID, containerID string) (VCContainer, error)
// EnterContainer is the virtcontainers container command execution entry point.
// EnterContainer enters an already running container and runs a given command.
func EnterContainer(sandboxID, containerID string, cmd Cmd) (VCSandbox, VCContainer, *Process, error)
// StatusContainer is the virtcontainers container status entry point.
// StatusContainer returns a detailed container status.
func StatusContainer(sandboxID, containerID string) (ContainerStatus, error)
// KillContainer is the virtcontainers entry point to send a signal
// to a container running inside a sandbox. If all is true, all processes in
// the container will be sent the signal.
func KillContainer(sandboxID, containerID string, signal syscall.Signal, all bool) error
// ProcessListContainer is the virtcontainers entry point to list
// processes running inside a container
func ProcessListContainer(sandboxID, containerID string, options ProcessListOptions) (ProcessList, error)
// This example creates and starts a single container sandbox,
// using qemu as the hypervisor and kata as the VM agent.
func Example_createAndStartSandbox() {
envs := []vc.EnvVar{
{
Var: "PATH",
Value: "/bin:/usr/bin:/sbin:/usr/sbin",
},
}
cmd := vc.Cmd{
Args: strings.Split("/bin/sh", " "),
Envs: envs,
WorkDir: "/",
}
// Define the container command and bundle.
container := vc.ContainerConfig{
ID: "1",
RootFs: containerRootfs,
Cmd: cmd,
}
// Sets the hypervisor configuration.
hypervisorConfig := vc.HypervisorConfig{
KernelPath: "/usr/share/clear-containers/vmlinux.container",
ImagePath: "/usr/share/clear-containers/clear-containers.img",
HypervisorPath: "/usr/bin/qemu-system-x86_64",
}
// Use kata default values for the agent.
agConfig := vc.KataAgentConfig{}
// VM resources
vmConfig := vc.Resources{
VCPUs: 4,
Memory: 1024,
}
// The sandbox configuration:
// - One container
// - Hypervisor is QEMU
// - Agent is kata
sandboxConfig := vc.SandboxConfig{
VMConfig: vmConfig,
HypervisorType: vc.QemuHypervisor,
HypervisorConfig: hypervisorConfig,
AgentType: vc.KataContainersAgent
AgentConfig: agConfig,
Containers: []vc.ContainerConfig{container},
}
_, err := vc.RunSandbox(sandboxConfig)
if err != nil {
fmt.Printf("Could not run sandbox: %s", err)
}
return
}