-
Notifications
You must be signed in to change notification settings - Fork 7
/
evaluate_utils.py
226 lines (195 loc) · 9.33 KB
/
evaluate_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import torch
import torch.nn as nn
from tqdm import tqdm
import os
from datautils import get_eval_loaders
from lm_eval.base import BaseLM
from lm_eval import evaluator
from datasets import load_dataset
import time
import re
class EvalLM(BaseLM):
def __init__(
self,
model,
tokenizer,
# device="cuda:0",
batch_size=1,
):
super().__init__()
# assert isinstance(device, str)
assert isinstance(batch_size, int)
# self._device = torch.device(device)
self._device = model.device
# self.model = model.to(self.device)
self.model = model
self.model.eval()
self.tokenizer = tokenizer
self.vocab_size = self.tokenizer.vocab_size
self.batch_size_per_gpu = batch_size # todo: adaptive batch size
self.seqlen = 2048
@property
def eot_token_id(self):
# we use EOT because end of *text* is more accurate for what we're doing than end of *sentence*
return self.tokenizer.eos_token_id
@property
def max_length(self):
try:
return self.model.config.n_ctx
except AttributeError:
# gptneoconfig doesn't have n_ctx apparently
return self.model.config.max_position_embeddings
@property
def max_gen_toks(self):
return 256
@property
def batch_size(self):
# TODO: fix multi-gpu
return self.batch_size_per_gpu # * gpus
@property
def device(self):
# TODO: fix multi-gpu
return self._device
def tok_encode(self, string: str):
return self.tokenizer.encode(string, add_special_tokens=False)
def tok_decode(self, tokens):
return self.tokenizer.decode(tokens)
def _model_call(self, inps):
"""
inps: a torch tensor of shape [batch, sequence]
the size of sequence may vary from call to call
returns: a torch tensor of shape [batch, sequence, vocab] with the
logits returned from the model
"""
with torch.no_grad():
return self.model(inps)[0][:, :, :50257]
def _model_generate(self, context, max_length, eos_token_id):
return self.model.generate(context, max_length=max_length, eos_token_id=eos_token_id, do_sample=False)
@torch.no_grad()
def evaluate_perplexity(model, dataset, limit):
"""
dataset: input ids tensor of shape [batch, sequence length]
"""
nsamples, seqlen = dataset.size()
nlls = []
for i in range(nsamples):
if i == limit:
break
input_ids = dataset[i : i + 1, :-1].to(model.device)
labels = dataset[i : i + 1, 1:].contiguous()
logits = model(input_ids=input_ids)[0]
shift_logits = logits[:, :, :]
shift_labels = labels.to(model.device)
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(
shift_logits.view(-1, shift_logits.size(-1)),
shift_labels.view(-1),
)
neg_log_likelihood = loss.float() * seqlen
nlls.append(neg_log_likelihood)
ppl = torch.exp(torch.stack(nlls).sum() / (len(nlls) * seqlen))
return ppl.item()
@torch.no_grad()
def evaluate_model(
model,
tokenizer,
model_name,
tasks,
eval_ppl="",
num_fewshot=0,
limit=-1,
batch_size=1,
use_bos=False,
):
"""
model: model name
limit: number of test samples for debug, set to -1 is no limit
tasks: str tasks are split by ,
num_fewshot: Number of examples in few-shot context
eval_ppl: str datasets are split by , such as 'wikitext2,ptb,c4'
"""
lm = EvalLM(model, tokenizer, batch_size=batch_size)
results = {}
if eval_ppl:
for dataset in eval_ppl.split(","):
cache_testloader = f"/tmp/{dataset}_testloader_{model_name.replace('/', '_')}_all.cache"
if os.path.exists(cache_testloader):
testloader = torch.load(cache_testloader)
# print(f"load calibration from {cache_testloader}")
else:
testloader = get_eval_loaders(dataset, tokenizer)
torch.save(testloader, cache_testloader)
# print(dataset)
testenc = testloader.input_ids
if use_bos:
lm.seqlen -= 1
nsamples = testenc.numel() // lm.seqlen
use_cache = lm.model.config.use_cache
lm.model.config.use_cache = False
lm.model.eval()
nlls = []
for i in tqdm(range(nsamples)):
batch = testenc[:, (i * lm.seqlen) : ((i + 1) * lm.seqlen)].to(lm.device)
if use_bos:
bos_tokens_tensor = torch.tensor([[tokenizer.bos_token_id]] * batch.size(dim=0)).to(lm.device)
batch = torch.cat([bos_tokens_tensor, batch], dim=1)
outputs = lm.model.model(batch)
hidden_states = outputs[0] # .to(lm.model.lm_head.weight.device)
if use_bos:
hidden_states = hidden_states[:, 1:, :]
logits = lm.model.lm_head(hidden_states) # .contiguous()
shift_logits = logits[:, :-1, :] # .contiguous()
shift_labels = testenc[:, (i * lm.seqlen) : ((i + 1) * lm.seqlen)][:, 1:].to(lm.device)
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(
shift_logits.view(-1, shift_logits.size(-1)),
shift_labels.view(-1),
)
neg_log_likelihood = loss.float() * lm.seqlen
nlls.append(neg_log_likelihood)
if i == limit:
break
# if i == 1:
# print(
# "memory_allocated",
# i,
# torch.cuda.memory_allocated() / 1024 / 1024,
# "max memory_allocated",
# torch.cuda.max_memory_allocated() / 1024**2,
# )
ppl = torch.exp(torch.stack(nlls).sum() / (len(nlls) * lm.seqlen))
print(dataset, ppl.item())
lm.model.config.use_cache = use_cache
results[dataset] = ppl.item()
if tasks == "longbench":
from tools.eval_longbench import eval_longbench, full_longeval_datasets, small_longeval_datasets
longbench_results = eval_longbench(model, tokenizer, model_name, datasets=full_longeval_datasets)
results.update(longbench_results)
tasks = ""
elif tasks == "small_longbench":
from tools.eval_longbench import eval_longbench, full_longeval_datasets, small_longeval_datasets
longbench_results = eval_longbench(model, tokenizer, model_name, datasets=small_longeval_datasets)
results.update(longbench_results)
tasks = ""
elif tasks == "mmlu":
tasks = "hendrycksTest-abstract_algebra,hendrycksTest-anatomy,hendrycksTest-astronomy,hendrycksTest-business_ethics,hendrycksTest-clinical_knowledge,hendrycksTest-college_biology,hendrycksTest-college_chemistry,hendrycksTest-college_computer_science,hendrycksTest-college_mathematics,hendrycksTest-college_medicine,hendrycksTest-college_physics,hendrycksTest-computer_security,hendrycksTest-conceptual_physics,hendrycksTest-econometrics,hendrycksTest-electrical_engineering,hendrycksTest-elementary_mathematics,hendrycksTest-formal_logic,hendrycksTest-global_facts,hendrycksTest-high_school_biology,hendrycksTest-high_school_chemistry,hendrycksTest-high_school_computer_science,hendrycksTest-high_school_european_history,hendrycksTest-high_school_geography,hendrycksTest-high_school_government_and_politics,hendrycksTest-high_school_macroeconomics,hendrycksTest-high_school_mathematics,hendrycksTest-high_school_microeconomics,hendrycksTest-high_school_physics,hendrycksTest-high_school_psychology,hendrycksTest-high_school_statistics,hendrycksTest-high_school_us_history,hendrycksTest-high_school_world_history,hendrycksTest-human_aging,hendrycksTest-human_sexuality,hendrycksTest-international_law,hendrycksTest-jurisprudence,hendrycksTest-logical_fallacies,hendrycksTest-machine_learning,hendrycksTest-management,hendrycksTest-marketing,hendrycksTest-medical_genetics,hendrycksTest-miscellaneous,hendrycksTest-moral_disputes,hendrycksTest-moral_scenarios,hendrycksTest-nutrition,hendrycksTest-philosophy,hendrycksTest-prehistory,hendrycksTest-professional_accounting,hendrycksTest-professional_law,hendrycksTest-professional_medicine,hendrycksTest-professional_psychology,hendrycksTest-public_relations,hendrycksTest-security_studies,hendrycksTest-sociology,hendrycksTest-us_foreign_policy,hendrycksTest-virology,hendrycksTest-world_religions"
elif tasks == "llmqat":
# tasks = "boolq,piqa,hellaswag,winogrande,arc_easy,arc_challenge,openbookqa"
tasks = "lambada_openai,openbookqa"
if tasks != "":
t_results = evaluator.simple_evaluate(
lm,
tasks=tasks.split(","),
batch_size=batch_size,
num_fewshot=num_fewshot,
limit=None if limit == -1 else limit,
no_cache=True,
)
t_results = t_results["results"]
acc_list = [t_results[key]["acc"] for key in t_results.keys() if "acc" in t_results[key]]
t_results["mean"] = sum(acc_list) / len(acc_list)
results.update(t_results)
print(results)
# print mean
print(f"\n\n===== mean acc: {sum(acc_list)/len(acc_list)} =====\n\n")
return results