-
Notifications
You must be signed in to change notification settings - Fork 0
/
lin.py
725 lines (644 loc) · 30.3 KB
/
lin.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
#!/usr/env/bin python3
#-*- coding: UTF-8 -*-
"""
MIT License
Copyright (c) 2024 Hosein Hadipour
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
Disclaimer: We acknowledge that the WARP block cipher doesn't adhere to statistical assumptions
in differential analysis, such as the random sub-key assumption
or Markov cipher assumption. The tool's primary function is to find some bounds
for the security of TWINE against differential and differential-linear cryptanalysis.
"""
from argparse import ArgumentParser, RawTextHelpFormatter
import yaml
import time
from gurobipy import *
import math
import os
class Lin:
"""
This class is used to find linear trail as well as
computing the expected squared correlation for a linear hull of WARP block cipher.
x_roundNumber_nibbleNumber_bitNumber
x_roundNumber_nibbleNumber_0: msb
x_roundNumber_nibbleNumber_3: lsb
Variable mapping:
... x_r_0 --- x_r_1 ...
... | | |
... |----y_r_0----> | S | -------+---->+ ...
... | | ...
"""
lin_count = 0
def __init__(self, params) -> None:
Lin.lin_count += 1
self.nrounds = params["nrounds"]
self.time_limit = params["timelimit"]
self.start_weight = params["startweight"]
self.end_weight = params["endweight"]
self.fixed_variables = params['fixedVariables']
self.mode = params['mode']
self.number_of_trails = params["numberoftrails"]
self.eps = 1e-3
self.permute_nibbles = [31, 6, 29, 14, 1, 12, 21, 8, 27, 2, 3, 0, 25, 4, 23, 10,
15, 22, 13, 30, 17, 28, 5, 24, 11, 18, 19, 16, 9, 20, 7, 26]
self.lp_file_name = f"warp_nr_{self.nrounds}.lp"
self.result_file_name = f"result_nr_{self.nrounds}.txt"
self.milp_variables = []
"""
We used S-box Analyzer [1] to derive the following inequalities.
[1]- https://tosc.iacr.org/index.php/ToSC/article/view/9858
Simplifying the MILP/SAT constraints ...
Time used to simplify the constraints: 0.01 seconds
Number of constraints: 49
Input: a0||a1||a2||a3; a0: msb
Output: b0||b1||b2||b3; b0: msb
Weight: 4.0000 p0 + 2.0000 p1
"""
self.sbox_inequalities = ['- p0 - p1 >= -1',
'a2 + b0 - b1 - b3 >= -1',
'a0 + a1 + a3 - p0 >= 0',
'b0 + b1 + b3 - p0 >= 0',
'a0 - a1 - a3 + p1 >= -1',
'b0 - b1 - b3 + p1 >= -1',
'a0 - a1 + a2 - a3 + b0 >= -1',
'- a0 - a1 + a3 - b0 + p0 >= -2',
'- a0 + a1 - b0 - b1 + p0 >= -2',
'a0 + a2 + b0 - b1 + p0 >= 0',
'- a1 - a2 + a3 + b1 + p0 >= -1',
'a0 + a1 - b0 - b2 + p0 >= -1',
'a1 + a2 - b0 - b2 + p0 >= -1',
'a0 - a1 + b0 + b2 + p0 >= 0',
'a2 - a3 + b1 + b2 + p0 >= 0',
'- a0 - a2 + b1 - b3 + p0 >= -2',
'a2 + a3 - b2 - b3 + p0 >= -1',
'a1 + a2 + b2 - b3 + p0 >= 0',
'- a2 - a3 + b1 + b3 + p0 >= -1',
'a1 - b1 - b2 + b3 + p0 >= -1',
'- a0 - a2 + b2 + b3 + p0 >= -1',
'a0 + a1 - a2 + a3 + p1 >= 0',
'- a0 + a1 - a3 + b0 + p1 >= -1',
'- a0 - a1 + a3 + b0 + p1 >= -1',
'- a1 - a3 - b1 - b3 + p1 >= -3',
'a1 + a3 - b1 - b3 + p1 >= -1',
'a0 - b0 + b1 - b3 + p1 >= -1',
'a0 - b0 - b1 + b3 + p1 >= -1',
'b0 + b1 - b2 + b3 + p1 >= 0',
'a0 + a1 + a3 + b0 - b1 - b3 >= -1',
'- a1 - a3 + b0 - b1 - b2 - b3 >= -4',
'- a0 - a1 - a3 - b0 + b1 + b3 >= -3',
'a1 - a2 + a3 + b0 - b2 + p0 >= -1',
'a0 - a2 - a3 - b1 + b2 + p0 >= -2',
'- a1 - a2 - b0 + b2 - b3 + p0 >= -3',
'a0 + a2 + a3 - b0 + b3 + p0 >= 0',
'- a0 - a1 - a3 - b1 + b3 + p0 >= -3',
'- a0 + a1 - a3 - b2 + b3 + p0 >= -2',
'- a2 + a3 - b1 - b2 + b3 + p0 >= -2',
'- a0 + a3 + b0 + b2 + b3 + p0 >= 0',
'- a2 + a3 - b0 + b1 - b3 - p1 >= -3',
'a1 - a2 - b0 - b1 + b3 - p1 >= -3',
'- a0 - a1 + a3 + b1 + b3 - p1 >= -2',
'a1 + a3 - b0 + b1 + b3 + p1 >= 0',
'a0 - a1 + a2 - b0 - b1 + b2 + p0 >= -2',
'a0 + a1 - a3 + b0 + b1 - b3 + p0 >= -1',
'- a0 - a1 + a2 - a3 - b2 - b3 + p0 >= -4',
'a0 - a2 - b0 - b1 - b2 - b3 + p0 >= -4',
'a0 + a1 + a3 + b0 + b1 + b3 + p0 - p1 >= 0']
@staticmethod
def ordered_set(seq):
"""
This method eliminates duplicated elements in a given list,
and returns a list in which each elements appears only once
"""
seen = set()
seen_add = seen.add
return [x for x in seq if not (x in seen or seen_add(x))]
@staticmethod
def flatten_state(s):
state_bits = [s[i][j] for i in range(len(s)) for j in range(len(s[0]))]
return state_bits
@staticmethod
def convert_str_to_binarystatevector(str_hex):
assert(len(str_hex) == 32)
state = [0]*128
for nibble in range(32):
for i in range(3, -1, -1):
state[i] = ((int(str_hex[nibble], base=16) >> i) & 0x1)
return state
def inv_permute_nibbles(self, state):
temp = [0]*32
for i in range(32):
temp[i] = state[self.permute_nibbles[i]]
return temp
def generate_round_x_variables(self, rn):
"""
Generate the input variables of rn'th round
"""
x = [[f"x_{rn}_{nibble}_{bit}" for bit in range(4)] for nibble in range(32)]
self.milp_variables.extend(self.flatten_state(x))
return x
def generate_round_y_variables(self, rn):
"""
Generate the variables corresponding to the
output of S-boxes in rn'th round
"""
y = [[f"y_{rn}_{nibble}_{bit}" for bit in range(4)] for nibble in range(16)]
self.milp_variables.extend(self.flatten_state(y))
return y
def generate_round_pr_variables(self, rn):
"""
Generate the variables encoding the probability of S-boxes
"""
pr = [[f"pr_{rn}_{nibble}_{bit}" for bit in range(2)] for nibble in range(16)]
self.milp_variables.extend(self.flatten_state(pr))
return pr
def constraints_by_equality(self, a, b):
"""
Generate constraints for equality
a = b
"""
constraint = f"{a} - {b} = 0\n"
return constraint
def constraint_by_nibble_equality(self, a, b):
"""
Generate constraints corresponding
to equality of two nibbles
"""
constraints = ""
for bit in range(4):
constraints += f"{a[bit]} - {b[bit]} = 0\n"
return constraints
def constraints_by_xor(self, a, b, c):
"""
a + b = c
model:
- a - b - c >= -2
a + b - c >= 0
a - b + c >= 0
- a + b + c >= 0
"""
constraints = f"- {a} - {b} - {c} >= -2\n"
constraints += f"{a} + {b} - {c} >= 0\n"
constraints += f"{a} - {b} + {c} >= 0\n"
constraints += f"- {a} + {b} + {c} >= 0\n"
return constraints
def constraints_by_nibble_xor(self, a, b, c):
"""
Generate constraints for XOR of nibbles
"""
constraints = ""
for bit in range(4):
constraints += self.constraints_by_xor(a[bit], b[bit], c[bit])
return constraints
def constraints_by_sbox(self, li, lo, pr):
"""
Generate constraints modeling the DDT of S-box
:param str[4] li: input mask
:param str[4] lo: output mask
:param str[3] pr: correlation of (li --> lo) such that
-log2(squared_correlation) = 4*pr[0] + 2*pr[1]
:return constraints encoding the DDT of S-box:
:rtype str:
"""
constraints = ""
for ineq in self.sbox_inequalities:
temp = ineq
for i in range(4):
temp = temp.replace(f"a{i}", li[i])
for i in range(4):
temp = temp.replace(f"b{i}", lo[i])
for i in range(2):
temp = temp.replace(f"p{i}", pr[i])
constraints += temp + "\n"
return constraints
def generate_objective_function(self):
"""
Generate the objective function of MILP model
The objective is minimizng the weighted sum of variables corresponding to
the squared correaltion for linear transitions over all S-boxes
.... + 4 p0 + 2 p1 + ....
"""
objective_function = "minimize\n"
weight = []
for r in range(self.nrounds):
pr = [[f"4 pr_{r}_{nibble}_0 + 2 pr_{r}_{nibble}_1"] for nibble in range(16)]
weight += self.flatten_state(pr)
weight = " + ".join(weight)
objective_function += weight + "\n"
return objective_function
def generate_constraints(self):
"""
Generate the constraints describing the propagation
of linear trails through a reduced-round WARP
"""
constraints = "subject to\n"
for rn in range(self.nrounds):
x_in = self.generate_round_x_variables(rn)
pr = self.generate_round_pr_variables(rn)
y = self.generate_round_y_variables(rn)
x_out = self.generate_round_x_variables(rn + 1)
x_middle = self.inv_permute_nibbles(x_out)
for nibble in range(16):
constraints += self.constraint_by_nibble_equality(x_in[2*nibble + 1], x_middle[2*nibble + 1])
constraints += self.constraints_by_sbox(li=y[nibble], lo=x_in[2*nibble + 1], pr=pr[nibble])
constraints += self.constraints_by_nibble_xor(x_in[2*nibble], y[nibble], x_middle[2*nibble])
return constraints
def declare_binary_vars(self):
"""
Declare binary variables of MILP model
"""
self.milp_variables = self.ordered_set(self.milp_variables)
constraints = "Binary\n"
constraints += "\n".join(self.milp_variables) + "\n"
return constraints
def exclude_trivial_trail(self):
"""
Exclude all-zero solution from the solution space
"""
input_mask = self.flatten_state(self.generate_round_x_variables(0))
input_mask = " + ".join(input_mask)
constraint = f"{input_mask} >= 1\n"
return constraint
def declare_fixed_variables(self):
lp_contents = ""
for cond in self.fixed_variables.items():
var = cond[0]
val = cond[1]
var = var.split('_')
if len(var) == 2:
assert(var[0] == "x")
state_vars = self.generate_round_x_variables(var[1])
state_vars = self.flatten_state(state_vars)
if "*" not in val:
state_values = list(bin(int(val, 16))[2:].zfill(128))
for i in range(128):
lp_contents += f"{state_vars[i]} = {state_values[i]}\n"
else:
fixed_positions = [i for i in range(32) if val[i] != "*"]
for nibble in fixed_positions:
nibble_value = list(bin(int(val[nibble], 16))[2:].zfill(4))
for i in range(4):
lp_contents += f"{state_vars[4*nibble + i]} = {nibble_value[i]}\n"
elif len(var) == 3:
assert(var[0] == "x")
state_vars = [f"x_{var[1]}_{var[2]}_{bit}" for bit in range(4)]
state_values = list(bin(int(val, 16))[2:].zfill(4))
for i in range(4):
lp_contents += f"{state_vars[i]} = {state_values[i]}\n"
elif len(var) == 4:
assert(var[0] == "x")
lp_contents += f"{cond[0]} = {cond[1]}\n"
else:
pass
return lp_contents
def make_model(self):
"""
Build the MILP model to find the best linear trail
"""
lp_contents = "\\ Linear attack on {} rounds of WARP\n".format(self.nrounds)
lp_contents += self.generate_objective_function()
lp_contents += self.generate_constraints()
lp_contents += self.exclude_trivial_trail()
lp_contents += self.declare_fixed_variables()
lp_contents += self.declare_binary_vars()
lp_contents += "end"
with open(self.lp_file_name, "w") as lp_file:
lp_file.write(lp_contents)
def exclude_the_previous_sol(self):
'''
Let x{S} be the binary variables. Suppose you have a binary
solution x* in available from the most recent optimization.
Let N be the subset of S such that x*[n] = 1 for all n in N
Then, add the following constraint:
sum{n in N} x[n] - sum{s in S-N} x[s] <= |N|-1
'''
all_vars = self.milp_model.getVars()
nonzero_vars = [v for v in all_vars if v.x == 1]
zero_vars = [v for v in all_vars if v.x == 0]
support = len(nonzero_vars)
first_term = sum(nonzero_vars)
second_term = sum(zero_vars)
lhs = first_term - second_term
self.milp_model.addConstr(lhs <= support - 1)
def solve(self):
output = None
self.milp_model = read(self.lp_file_name)
os.remove(self.lp_file_name)
if self.mode == 0:
output = self.find_characteristic()
elif self.mode == 1:
self.find_multiple_characteristics(self.number_of_trails)
elif self.mode == 2:
output = self.compute_linear_effect()
# self.compute_linear_effect_classic_method()
else:
print('Enter a number in [0, 1, 2], for the mode parameter please!')
return output
def parse_solver_output(self):
"""
Extract the linear characteristic from the solver output
"""
get_bit_value = lambda t: str(int(self.milp_model.getVarByName(t).Xn))
characteristic = dict()
for r in range(self.nrounds + 1):
x = self.flatten_state(self.generate_round_x_variables(r))
x_value = hex(int("0b" + "".join(list(map(lambda t: str(int(self.milp_model.getVarByName(t).Xn)), x))), 2))[2:].zfill(32)
characteristic[f"x_{r}"] = x_value
for r in range(self.nrounds):
round_probability = 0
for nibble in range(16):
round_probability += sum([4*int(self.milp_model.getVarByName(f"pr_{r}_{nibble}_0").Xn),
2*int(self.milp_model.getVarByName(f"pr_{r}_{nibble}_1").Xn)])
characteristic[f"pr_{r}"] = f"-{round_probability}"
characteristic["total_weight"] = "%0.02f" % self.total_weight
characteristic["nrounds"] = self.nrounds
return characteristic
@staticmethod
def print_trail(trail):
"""
Print out the discovered linear characteristic
"""
header = ['x', 'correlation']
# Print everthing
diff_trail_values = map(str, trail.values())
col_width = max(len(s) for s in diff_trail_values) + 2
header_str = "Rounds\t"
data_str = ""
current_row = 0
for entry in header[0:-2]:
header_str += entry.ljust(col_width)
header_str += header[-2].ljust(col_width)
header_str += header[-1].ljust(7)
for r in range(trail["nrounds"] + 1):
data_str += str(current_row) + '\t'
data_str += trail.get(f"x_{r}", 'none').ljust(col_width)
data_str += trail.get(f"pr_{r}", 'none').ljust(col_width)
data_str += '\n'
current_row += 1
stroutput = header_str
stroutput += "\n" + "-"*len(header_str) + "\n"
stroutput += data_str
total_weight = trail["total_weight"]
stroutput += f"Weight: -{total_weight}" + "\n"
return stroutput
def find_characteristic(self):
"""
Find the best linear trail for reduced-round WARP
"""
lin_trail = None
self.milp_model.Params.OutputFlag = False
if self.time_limit != None:
self.milp_model.Params.TIME_LIMIT = self.time_limit
obj = self.milp_model.getObjective()
# Consider the start_weight
if self.start_weight != None:
self.milp_model.addConstr(obj >= self.start_weight, 'start_weight_constraint')
time_start = time.time()
#m.setParam(GRB.Param.Threads, 16)
self.milp_model.optimize()
# Gurobi syntax: m.Status == 2 represents the model is feasible.
if (self.milp_model.Status == GRB.OPTIMAL or self.milp_model.Status == GRB.TIME_LIMIT or \
self.milp_model.Status == GRB.INTERRUPTED):
self.total_weight = self.milp_model.objVal
print(f"\nThe probability of the best linear characteristic: 2^-({self.total_weight})")
print("\nDifferential trail:\n")
lin_trail = self.parse_solver_output()
self.print_trail(trail=lin_trail)
# Gurobi syntax: m.Status == 3 represents the model is infeasible. (GRB.Status.INFEASIBLE)
elif self.milp_model.Status == GRB.INFEASIBLE:
print("The model is infeasible!")
else:
print("Unknown error!")
elapsed_time = time.time() - time_start
print("Time used: %0.02f" % elapsed_time)
return lin_trail
def find_multiple_characteristics(self, number_of_trails=2):
"""
Find multiple linear trails for reduced-round of WARP
"""
if self.time_limit != None:
self.milp_model.Params.TIME_LIMIT = self.time_limit
obj = self.milp_model.getObjective()
# Consider the start_weight
if self.start_weight != None:
self.milp_model.addConstr(obj >= self.start_weight, 'start_weight_constraint')
self.milp_model.Params.OutputFlag = False
self.milp_model.Params.PoolSearchMode = 2
# Limit number of solutions
self.milp_model.Params.PoolSolutions = number_of_trails
time_start = time.time()
self.milp_model.optimize()
if (self.milp_model.Status == GRB.OPTIMAL or self.milp_model.Status == GRB.TIME_LIMIT or \
self.milp_model.Status == GRB.INTERRUPTED):
# First Method:
for sol_number in range(number_of_trails):
if (self.milp_model.Status == GRB.OPTIMAL):
self.total_weight = self.milp_model.PoolObjVal
lin_trail = self.parse_solver_output()
self.print_trail(lin_trail=lin_trail)
elif (self.milp_model.Status == GRB.TIME_LIMIT or self.milp_model.Status == GRB.INTERRUPTED):
self.total_weight = self.milp_model.PoolObjVal
lin_trail = self.parse_solver_output()
self.print_trail(lin_trail=lin_trail)
break
else:
break
self.exclude_the_previous_sol()
print("#"*50)
self.milp_model.optimize()
# Second Method:
# number_of_trails = self.milp_model.SolCount
# for sol_number in range(number_of_trails):
# self.milp_model.Params.SolutionNumber = sol_number
# # PoolObjVal : This attribute is used to query the objective value of the <span>$</span>k<span>$</span>-th solution stored in the pool of feasible solutions found so far for the problem
# self.total_weight = self.milp_model.PoolObjVal
# lin_trail = self.parse_solver_output()
# self.print_trail(lin_trail=lin_trail)
# Gurobi syntax: m.Status == 3 represents the model is infeasible. (GRB.INFEASIBLE)
elif self.milp_model.Status == GRB.INFEASIBLE:
print("The model is infeasible!")
else:
print("Unknown error!")
elapsed_time = time.time() - time_start
print("Total time to find %s linear trails: %0.02f" % (number_of_trails, elapsed_time))
def compute_linear_effect(self):
"""
Compute the linear effect for a given input/output differences
Some general information about Gurobi:
PoolSolutions: It controls the size of the solution pool.
Changing this parameter won't affect the number of solutions that are found -
it simply determines how many of those are retained
You can use the PoolSearchMode parameter to control the approach used to find solutions.
In its default setting (0), the MIP search simply aims to find one optimal solution.
Setting the parameter to 2 causes the MIP to do a systematic search for the n best solutions.
With a setting of 2, it will find the n best solutions,
where n is determined by the value of the PoolSolutions parameter
SolCount: Number of solutions found during the most recent optimization.
Model status:
LOADED 1 Model is loaded, but no solution information is available.
OPTIMAL 2 Model was solved to optimality (subject to tolerances), and an optimal solution is available.
INFEASIBLE 3 Model was proven to be infeasible.
"""
if self.time_limit != None:
self.milp_model.Params.TIME_LIMIT = self.time_limit
#self.milp_model.Params.PreSolve = 0 # Activating this flag causes the performance to be decreased, but the accuracy will be increased
self.milp_model.Params.PoolSearchMode = 2
self.milp_model.Params.PoolSolutions = 1
self.milp_model.Params.OutputFlag = False
self.milp_model.printStats()
# Consider the start_weight
obj = self.milp_model.getObjective()
if self.start_weight != None:
self.milp_model.addConstr(obj >= self.start_weight, 'start_weight_constraint')
time_start = time.time()
self.milp_model.optimize()
current_probability = 0
if (self.milp_model.Status == GRB.OPTIMAL):
self.total_weight = self.milp_model.objVal
diff_prob = 0
print('\n')
while (self.milp_model.Status == GRB.OPTIMAL and self.total_weight <= self.end_weight):
self.total_weight = self.milp_model.PoolObjVal
self.milp_model.Params.PoolSolutions = 2000000000 #GRB.MAXINT
temp_constraint = self.milp_model.addConstr(obj == self.total_weight, name='temp_constraint')
# self.milp_model.Params.PoolGap = 0
# self.milp_model.Params.PreSolve = 0
# self.milp_model.printStats()
self.milp_model.update()
self.milp_model.optimize()
diff_prob += math.pow(2, -self.total_weight) * self.milp_model.SolCount
print(f"Current weight: {self.total_weight}")
print(f"Number of trails: {self.milp_model.SolCount}")
current_probability = math.log(diff_prob, 2)
print(f"\tCurrent Probability: 2^({current_probability})")
elapsed_time = time.time() - time_start
print("Time used = %0.04f seconds\n" % elapsed_time)
self.milp_model.remove(temp_constraint)
self.milp_model.Params.PoolSolutions = 1
self.milp_model.addConstr(obj >= (self.total_weight + self.eps), name='temp_cond')
#self.milp_model.Params.PreSolve = 0
self.milp_model.optimize()
elif (self.milp_model.Status == GRB.INFEASIBLE):
print("The model is infeasible!")
else:
print("Unknown Error!")
return current_probability
def compute_linear_effect_classic_method(self):
"""
Compute linear effect by enumerating all possible linear trails
"""
if self.time_limit != None:
self.milp_model.Params.TIME_LIMIT = self.time_limit
self.milp_model.Params.OutputFlag = False
# self.milp_model.printStats()
# Consider the start_weight
obj = self.milp_model.getObjective()
if self.start_weight != None:
self.milp_model.addConstr(obj >= self.start_weight, 'start_weight_constraint')
time_start = time.time()
self.milp_model.optimize()
# self.milp_model.Params.Quad = 1
sol_dict = dict()
if (self.milp_model.Status == GRB.OPTIMAL):
self.total_weight = self.milp_model.objVal
diff_prob = 0
print('\n')
while (self.milp_model.Status == GRB.OPTIMAL and self.total_weight <= self.end_weight):
self.total_weight = self.milp_model.objVal
diff_prob += math.pow(2, -self.total_weight)
total_weight_st = 'ntrails_%0.2f' % self.total_weight
sol_dict[total_weight_st] = sol_dict.get(total_weight_st, 0) + 1
print('Current weight: %s' % str(self.total_weight))
print('Number of trails: %d' % sol_dict[total_weight_st])
print('\tCurrent Probability: 2^(' + str(math.log(diff_prob, 2)) + ')')
time_end = time.time()
print('Time used = %0.4f seconds\n' % (time_end - time_start))
self.exclude_the_previous_sol()
self.milp_model.optimize()
elif (self.milp_model.Status == GRB.INFEASIBLE):
print('The model is infeasible!')
else:
print('Unknown Error!')
def loadparameters(args):
"""
Get parameters from the argument list and inputfile.
"""
# Load default values
params = {"nrounds" : 8,
"mode" : 0,
"startweight" : 0,
"endweight" : 128,
"timelimit" : 3600,
"numberoftrails" : 1,
"fixedVariables" : {}}
# Check if there is an input file specified
if args.inputfile:
with open(args.inputfile[0], 'r') as input_file:
doc = yaml.load(input_file, Loader=yaml.FullLoader)
params.update(doc)
if "fixedVariables" in doc:
fixed_vars = {}
for variable in doc["fixedVariables"]:
fixed_vars = dict(list(fixed_vars.items()) +
list(variable.items()))
params["fixedVariables"] = fixed_vars
# Override parameters if they are set on commandline
if args.nrounds:
params["nrounds"] = args.nrounds[0]
if args.startweight:
params["startweight"] = args.startweight[0]
if args.endweight:
params["endweight"] = args.endweight[0]
if args.mode:
params["mode"] = args.mode[0]
if args.timelimit:
params["timelimit"] = args.timelimit[0]
if args.numberoftrails:
params["numberoftrails"] = args.numberoftrails[0]
return params
def main():
"""
Parse the arguments and start the request functionality with the provided
parameters.
"""
parser = ArgumentParser(description="This tool finds the best linear"
"trail in a cryptographic primitive"
"using Gurobi",
formatter_class=RawTextHelpFormatter)
parser.add_argument('--startweight', nargs=1, type=int,
help="Starting weight for the trail search.")
parser.add_argument('--endweight', nargs=1, type=int,
help="Stop search after reaching endweight.")
parser.add_argument('--nrounds', nargs=1, type=int,
help="The number of rounds for the cipher")
parser.add_argument('--mode', nargs=1, type=int,
choices=[0, 1], help=
"0 = search characteristic for fixed round\n"
"1 = determine the probability of the linear\n")
parser.add_argument('--timelimit', nargs=1, type=int,
help="Set a timelimit for the search in seconds.")
parser.add_argument('--inputfile', nargs=1, help="Use an yaml input file to"
"read the parameters.")
parser.add_argument('--numberoftrails', nargs=1, type=int,
help="Number of trails.")
# Parse command line arguments and construct parameter list.
args = parser.parse_args()
params = loadparameters(args)
warp = Lin(params)
warp.make_model()
warp.solve()
if __name__ == "__main__":
main()