-
Notifications
You must be signed in to change notification settings - Fork 93
/
Copy pathmyhaversine.py
64 lines (54 loc) · 2.12 KB
/
myhaversine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
"""Computes miles between first two *_latitude and *_longitude named columns in the data set"""
#
# Custom transformer: MyHaversine
#
# Computes miles between first two lat, long columns in the data set. Column names should have
# strings 'latitude' and 'longitude' in it
# Example:
# pickup_latitude, pickup_longitude, dropoff_latitude, dropoff_longitude
#
# Author(s: Karthik Guruswamy, Principal SE, H2O.ai
# Tom Ott, Principal SE, H2O.ai
from h2oaicore.transformer_utils import CustomTransformer
import datatable as dt
from datatable import f
import numpy as np
import math
def distance(lat1, lon1, lat2, lon2):
# radius = 6371 # km
radius = 3959 # miles
# 3959 * 5280 # radius in feet
# 6371 * 1000 # radius in meters
dlat = math.radians(lat2 - lat1)
dlon = math.radians(lon2 - lon1)
a = math.sin(dlat / 2) * math.sin(dlat / 2) + math.cos(math.radians(lat1)) \
* math.cos(math.radians(lat2)) * math.sin(dlon / 2) * math.sin(dlon / 2)
c = 2 * math.atan2(math.sqrt(a), math.sqrt(1 - a))
d = radius * c
return d
class MyHaversine(CustomTransformer):
_unsupervised = True
@staticmethod
def get_default_properties():
return dict(col_type="numeric", min_cols="all", max_cols="all", relative_importance=1)
def fit_transform(self, X: dt.Frame, y: np.array = None):
return self.transform(X)
def transform(self, X: dt.Frame):
col_names = X.names
print(col_names)
lat = []
long = []
for col in col_names:
if col.find("latitude") > -1:
lat.append(col)
if (col.find("longitude") > -1):
long.append(col)
if (len(lat) == 2 and len(long) == 2):
return X.to_pandas().apply(lambda row: \
distance(row[lat[0]], \
row[long[0]], \
row[lat[1]], \
row[long[1]]), \
axis=1)
else:
return X.to_pandas().iloc[:, 0]