-
Notifications
You must be signed in to change notification settings - Fork 93
/
Copy pathtweedie_deviance.py
185 lines (163 loc) · 10 KB
/
tweedie_deviance.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
"""Tweedie Deviance scorer recipe.
User inputs can be provided through recipe_dict in config.
To pass power parameter
recipe_dict = "{'power':2.0}"
The default value is 1.5
If you need to print debug messages into DAI log, uncomment lines with logger and loggerinfo.
Starting 1.10.2 - DAI handles exceptions raised by custom scorers.
Default DAI behavior is to continue experiment in case of Scorer failure.
To enable forcing experiment to fail, in case of scorer error, set following parameters in DAI:
- skip_scorer_failures=false (Disabled)
- skip_model_failures=false (Disabled)
"""
import numpy as np
import typing
import math
from h2oaicore.metrics import CustomScorer
from h2oaicore.systemutils import print_debug
import logging
from h2oaicore.systemutils import config
from h2oaicore.systemutils import make_experiment_logger, loggerinfo, loggerwarning
class TweedieDeviance(CustomScorer):
_description = NotImplemented
_maximize = False # whether a higher score is better
_perfect_score = 0.0 # the ideal score, used for early stopping once validation score achieves this value
_supports_sample_weight = True # whether the scorer accepts and uses the sample_weight input
_regression = True
_display_name = "Tweedie_Deviance"
def __init__(self):
CustomScorer.__init__(self)
@staticmethod
def do_acceptance_test():
"""
Whether to enable acceptance tests during upload of recipe and during start of Driverless AI.
Acceptance tests perform a number of sanity checks on small data, and attempt to provide helpful instructions
for how to fix any potential issues. Disable if your recipe requires specific data or won't work on random data.
"""
return False
@property
def logger(self):
from h2oaicore import application_context
from h2oaicore.systemutils import exp_dir
# Don't assign to self, not picklable
return make_experiment_logger(experiment_id=application_context.context.experiment_id, tmp_dir=None,
experiment_tmp_dir=exp_dir())
def score(self, actual: np.array, predicted: np.array, sample_weight: typing.Optional[np.array] = None,
labels: typing.Optional[np.array] = None) -> float:
"""
:param actual: Ground truth (correct) target values.
:param predicted: Estimated target values
:param sample_weight: weights
:param labels: not used
power: default=1.5 sent to function via toml dictionary
Tweedie power parameter. Either power <= 0 or power >= 1.
To non-default power parameter use recipe_dict add via toml config DAI option. Example:
recipe_dict = "{'power':2.0}"
Multiple parameters example (first param is for demo only):
validate_meta_learner=false\nrecipe_dict = "{'power':2.0}"
The higher p the less weight is given to extreme deviations between true and predicted targets.
power < 0: Extreme stable distribution. Requires: y_pred > 0.
power = 0 : Normal distribution, output corresponds to mean_squared_error. y_true and y_pred can be any real numbers.
power = 1 : Poisson distribution. Requires: y_true >= 0 and y_pred > 0.
1 < p < 2 : Compound Poisson distribution. Requires: y_true >= 0 and y_pred > 0.
power = 2 : Gamma distribution. Requires: y_true > 0 and y_pred > 0.
power = 3 : Inverse Gaussian distribution. Requires: y_true > 0 and y_pred > 0.
otherwise : Positive stable distribution. Requires: y_true > 0 and y_pred > 0.
:return: score
"""
try:
"""Initialize logger to print additional info in case of invalid inputs(exception is raised) and to enable debug prints"""
logger = self.logger
from h2oaicore.systemutils import loggerinfo
# loggerinfo(logger, "Start TW Deviance Scorer.......")
# loggerinfo(logger, 'Actual:%s' % str(actual))
# loggerinfo(logger, 'Predicted:%s' % str(predicted))
# loggerinfo(logger, 'Sample W:%s' % str(sample_weight))
from sklearn.metrics import mean_tweedie_deviance
if config.recipe_dict is not None:
power = config.recipe_dict.get('power', 1.5)
else:
power = 1.5
# loggerinfo(logger, 'Power:%s' % str(power))
if sample_weight is not None:
'''Check if any element of the sample_weight array is nan'''
if np.isnan(np.sum(sample_weight)):
loggerinfo(logger, 'Sample Weight:%s' % str(sample_weight))
loggerinfo(logger, 'Sample Weight Nan values index:%s' % str(np.argwhere(np.isnan(sample_weight))))
raise RuntimeError(
'Error during Tweedie Deviance score calculation. Invalid sample weight values. Expecting only non-nan values')
if 0 < power < 1:
loggerinfo(logger, 'Power:%s' % str(power))
loggerinfo(logger,
"""Invalid power value. Power should be one of the following: \n
power < 0: Extreme stable distribution. Requires: y_pred > 0.
power = 0 : Normal distribution, output corresponds to mean_squared_error. y_true and y_pred can be any real numbers.
power = 1 : Poisson distribution. Requires: y_true >= 0 and y_pred > 0.
1 < p < 2 : Compound Poisson distribution. Requires: y_true >= 0 and y_pred > 0.
power = 2 : Gamma distribution. Requires: y_true > 0 and y_pred > 0.
power = 3 : Inverse Gaussian distribution. Requires: y_true > 0 and y_pred > 0.
otherwise : Positive stable distribution. Requires: y_true > 0 and y_pred > 0.""")
raise RuntimeError(
'Error during Tweedie Deviance score calculation. Invalid power value.')
actual = actual.astype('float64')
predicted = predicted.astype('float64')
'''Safety mechanizm in case predictions or actuals are zero'''
epsilon = 1E-8
actual += epsilon
predicted += epsilon
if power == 0:
'''No need to validate sign of actual or predicted'''
pass
elif power < 0:
if (predicted <= 0).any():
loggerinfo(logger, 'Predicted:%s' % str(predicted))
loggerinfo(logger, 'Invalid Predicted:%s' % str(predicted[predicted <= 0]))
raise RuntimeError(
'Power <0. Error during Tweedie Deviance score calculation. Invalid predicted values. Expecting only positive values')
elif 1 <= power < 2:
if (actual < 0).any():
loggerinfo(logger, 'Actual:%s' % str(actual))
loggerinfo(logger, 'Non-positive Actuals:%s' % str(actual[actual < 0]))
raise RuntimeError(
'1 <= power < 2. Error during Tweedie Deviance score calculation. Invalid actuals values. Expecting zero or positive values')
if (predicted <= 0).any() or np.isnan(np.sum(predicted)):
loggerinfo(logger, 'Predicted:%s' % str(predicted))
loggerinfo(logger, 'Invalid Predicted:%s' % str(predicted[predicted <= 0]))
raise RuntimeError(
'1 <= power < 2. Error during Tweedie Deviance score calculation. Invalid predicted values. Expecting only positive values')
elif power >= 2:
if (actual <= 0).any():
loggerinfo(logger, 'Actual:%s' % str(actual))
loggerinfo(logger, 'Non-positive Actuals:%s' % str(actual[actual <= 0]))
raise RuntimeError(
'power >= 2. Error during Tweedie Deviance score calculation. Invalid actuals values. Expecting zero or positive values')
if (predicted <= 0).any() or np.isnan(np.sum(predicted)):
loggerinfo(logger, 'Predicted:%s' % str(predicted))
loggerinfo(logger, 'Invalid Predicted:%s' % str(predicted[predicted <= 0]))
raise RuntimeError(
'power >= 2. Error during Tweedie Deviance score calculation. Invalid predicted values. Expecting only positive values')
'''Check if any element of the arrays is nan'''
if np.isnan(np.sum(actual)):
loggerinfo(logger, 'Actual:%s' % str(actual))
loggerinfo(logger, 'Nan values index:%s' % str(np.argwhere(np.isnan(actual))))
raise RuntimeError(
'Error during Tweedie Deviance score calculation. Invalid actuals values. Expecting only non-nan values')
if np.isnan(np.sum(predicted)):
loggerinfo(logger, 'Predicted:%s' % str(predicted))
loggerinfo(logger, 'Nan values index:%s' % str(np.argwhere(np.isnan(predicted))))
raise RuntimeError(
'Error during Tweedie Deviance score calculation. Invalid predicted values. Expecting only non-nan values')
score = mean_tweedie_deviance(actual, predicted, sample_weight=sample_weight, power=power)
'''Validate that score is non-negative and is not infinity or Nan'''
if score >= 0 and score < float("inf"):
pass
else:
loggerinfo(logger, 'Invalid calculated score:%s' % str(score))
raise RuntimeError(
'Error during Tweedie Deviance score calculation. Invalid calculated score:%s. \
Score should be non-negative and less than infinity. Nan is not valid' % str(score))
except Exception as e:
'''Print error message into DAI log file'''
loggerinfo(logger, 'Error during Tweedie Deviance score calculation. Exception raised: %s' % str(e))
raise
return score