-
Notifications
You must be signed in to change notification settings - Fork 93
/
Copy pathquantile_forest.py
150 lines (132 loc) · 5 KB
/
quantile_forest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
"""Quantile Random Forest Regression model from skgarden"""
import datatable as dt
import numpy as np
from h2oaicore.models import CustomModel
from h2oaicore.systemutils import physical_cores_count
class RandomForestQuantileModel(CustomModel):
_regression = True
_binary = False
_multiclass = False
_alpha = 0.8 # PLEASE CONFIGURE
_display_name = "QuantileRandomForest alpha=%g" % _alpha
_description = "Quantile Random Forest Regression"
_testing_can_skip_failure = False # ensure tested as if shouldn't fail
_modules_needed_by_name = ['scikit-garden==0.1.3']
# pre-built:
# _modules_needed_by_name = ['https://s3.amazonaws.com/artifacts.h2o.ai/deps/dai/recipes/scikit_garden-0.1.3-cp38-cp38-linux_x86_64.whl']
@staticmethod
def do_acceptance_test():
return False
@staticmethod
def is_enabled():
return False # scikit-garden is from 2017 and no longer compatible with new sklearn despite attempts to make it work
def set_default_params(
self,
accuracy=None,
time_tolerance=None,
interpretability=None,
**kwargs
):
# fill up parameters we care about
self.params = dict(
random_state=kwargs.get("random_state", 1234),
n_estimators=min(kwargs.get("n_estimators", 100), 2000),
criterion="mse",
max_depth=10,
min_samples_leaf=10,
n_jobs=self.params_base.get("n_jobs", max(1, physical_cores_count)),
)
def mutate_params(
self,
accuracy=10,
**kwargs
):
if accuracy > 8:
estimators_list = [300, 500, 1000, 2000, ]
depth_list = [10, 20, 30, 50, 100, ]
samples_leaf_list = [10, 20, 30, ]
elif accuracy >= 5:
estimators_list = [50, 100, 200, 300, ]
depth_list = [5, 10, 15, 25, 50, ]
samples_leaf_list = [20, 40, 60, ]
else:
estimators_list = [10, 20, 40, 60, ]
depth_list = [1, 2, 3, 5, 10, ]
samples_leaf_list = [30, 60, 90, ]
criterion_list = ["mse", "mae", ]
# modify certain parameters for tuning
self.params["n_estimators"] = int(np.random.choice(estimators_list))
self.params["criterion"] = np.random.choice(criterion_list)
self.params["max_depth"] = int(np.random.choice(depth_list))
self.params["min_samples_leaf"] = int(np.random.choice(samples_leaf_list))
def fit(
self,
X,
y,
sample_weight=None,
eval_set=None,
sample_weight_eval_set=None,
**kwargs
):
X = dt.Frame(X)
orig_cols = list(X.names)
self.pre_get_model()
from skgarden import RandomForestQuantileRegressor
model = RandomForestQuantileRegressor(**self.params)
X = self.basic_impute(X)
X = X.to_numpy()
model.fit(X, y)
importances = np.array(model.feature_importances_)
self.set_model_properties(
model=model,
features=orig_cols,
importances=importances.tolist(),
iterations=self.params["n_estimators"],
)
def basic_impute(
self,
X
):
# scikit extra trees internally converts to np.float32 during all operations,
# so if float64 datatable, need to cast first, in case will be nan for float32
from h2oaicore.systemutils import update_precision
X = update_precision(X, data_type=np.float32)
# replace missing values with a value smaller than all observed values
if not hasattr(self, "min"):
self.min = dict()
for col in X.names:
XX = X[:, col]
if col not in self.min:
self.min[col] = XX.min1()
if (
self.min[col] is None
or np.isnan(self.min[col])
or np.isinf(self.min[col])
):
self.min[col] = -1e10
else:
self.min[col] -= 1
XX.replace([None, np.inf, -np.inf], self.min[col])
X[:, col] = XX
assert X[dt.isna(dt.f[col]), col].nrows == 0
return X
def predict(
self,
X,
**kwargs
):
X = dt.Frame(X)
X = self.basic_impute(X)
X = X.to_numpy()
model, _, _, _ = self.get_model_properties()
preds = model.predict(X, quantile=RandomForestQuantileModel._alpha)
return preds
def pre_get_model(self, X_shape=(1, 1), **kwargs):
# work-around use of old code that applies only for scikit-learn <=0.22 and runs from sklearn.externals import six
import six
import sys
sys.modules['sklearn.externals.six'] = six
from sklearn import ensemble
sys.modules['sklearn.ensemble.forest'] = ensemble._forest
from sklearn import tree
sys.modules['sklearn.tree.tree'] = tree._tree