forked from tpruvot/ccminer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcuda_myriadgroestl.cu
360 lines (292 loc) · 10.4 KB
/
cuda_myriadgroestl.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
// Auf Myriadcoin spezialisierte Version von Groestl inkl. Bitslice
#include <stdio.h>
#include <memory.h>
#include "cuda_helper.h"
#ifdef __INTELLISENSE__
#define __CUDA_ARCH__ 500
#define __funnelshift_r(x,y,n) (x >> n)
#define atomicExch(p,x) x
#endif
#if __CUDA_ARCH__ >= 300
// 64 Registers Variant for Compute 3.0
#include "quark/groestl_functions_quad.h"
#include "quark/groestl_transf_quad.h"
#endif
// globaler Speicher für alle HeftyHashes aller Threads
static uint32_t *d_outputHashes[MAX_GPUS];
static uint32_t *d_resultNonces[MAX_GPUS];
__constant__ uint32_t pTarget[2]; // Same for all GPU
__constant__ uint32_t myriadgroestl_gpu_msg[32];
// muss expandiert werden
__constant__ uint32_t myr_sha256_gpu_constantTable[64];
__constant__ uint32_t myr_sha256_gpu_constantTable2[64];
const uint32_t myr_sha256_cpu_constantTable[] = {
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2,
};
const uint32_t myr_sha256_cpu_w2Table[] = {
0x80000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000200,
0x80000000, 0x01400000, 0x00205000, 0x00005088, 0x22000800, 0x22550014, 0x05089742, 0xa0000020,
0x5a880000, 0x005c9400, 0x0016d49d, 0xfa801f00, 0xd33225d0, 0x11675959, 0xf6e6bfda, 0xb30c1549,
0x08b2b050, 0x9d7c4c27, 0x0ce2a393, 0x88e6e1ea, 0xa52b4335, 0x67a16f49, 0xd732016f, 0x4eeb2e91,
0x5dbf55e5, 0x8eee2335, 0xe2bc5ec2, 0xa83f4394, 0x45ad78f7, 0x36f3d0cd, 0xd99c05e8, 0xb0511dc7,
0x69bc7ac4, 0xbd11375b, 0xe3ba71e5, 0x3b209ff2, 0x18feee17, 0xe25ad9e7, 0x13375046, 0x0515089d,
0x4f0d0f04, 0x2627484e, 0x310128d2, 0xc668b434, 0x420841cc, 0x62d311b8, 0xe59ba771, 0x85a7a484
};
#define SWAB32(x) cuda_swab32(x)
#if __CUDA_ARCH__ < 320
// Kepler (Compute 3.0)
#define ROTR32(x, n) (((x) >> (n)) | ((x) << (32 - (n))))
#else
// Kepler (Compute 3.5)
#define ROTR32(x, n) __funnelshift_r( (x), (x), (n) )
#endif
#define R(x, n) ((x) >> (n))
#define Ch(x, y, z) ((x & (y ^ z)) ^ z)
#define Maj(x, y, z) ((x & (y | z)) | (y & z))
#define S0(x) (ROTR32(x, 2) ^ ROTR32(x, 13) ^ ROTR32(x, 22))
#define S1(x) (ROTR32(x, 6) ^ ROTR32(x, 11) ^ ROTR32(x, 25))
#define s0(x) (ROTR32(x, 7) ^ ROTR32(x, 18) ^ R(x, 3))
#define s1(x) (ROTR32(x, 17) ^ ROTR32(x, 19) ^ R(x, 10))
__device__ __forceinline__
void myriadgroestl_gpu_sha256(uint32_t *message)
{
uint32_t W1[16];
#pragma unroll
for(int k=0; k<16; k++)
W1[k] = SWAB32(message[k]);
uint32_t regs[8] = {
0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a,
0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19
};
// Progress W1
#pragma unroll
for(int j=0; j<16; j++)
{
uint32_t T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + myr_sha256_gpu_constantTable[j] + W1[j];
uint32_t T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]);
#pragma unroll 7
for (int k=6; k >= 0; k--) regs[k+1] = regs[k];
regs[0] = T1 + T2;
regs[4] += T1;
}
// Progress W2...W3
uint32_t W2[16];
////// PART 1
#pragma unroll
for(int j=0; j<2; j++)
W2[j] = s1(W1[14+j]) + W1[9+j] + s0(W1[1+j]) + W1[j];
#pragma unroll 5
for(int j=2; j<7;j++)
W2[j] = s1(W2[j-2]) + W1[9+j] + s0(W1[1+j]) + W1[j];
#pragma unroll
for(int j=7; j<15; j++)
W2[j] = s1(W2[j-2]) + W2[j-7] + s0(W1[1+j]) + W1[j];
W2[15] = s1(W2[13]) + W2[8] + s0(W2[0]) + W1[15];
// Round function
#pragma unroll
for(int j=0; j<16; j++)
{
uint32_t T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + myr_sha256_gpu_constantTable[j + 16] + W2[j];
uint32_t T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]);
#pragma unroll 7
for (int l=6; l >= 0; l--) regs[l+1] = regs[l];
regs[0] = T1 + T2;
regs[4] += T1;
}
////// PART 2
#pragma unroll
for(int j=0; j<2; j++)
W1[j] = s1(W2[14+j]) + W2[9+j] + s0(W2[1+j]) + W2[j];
#pragma unroll 5
for(int j=2; j<7; j++)
W1[j] = s1(W1[j-2]) + W2[9+j] + s0(W2[1+j]) + W2[j];
#pragma unroll
for(int j=7; j<15; j++)
W1[j] = s1(W1[j-2]) + W1[j-7] + s0(W2[1+j]) + W2[j];
W1[15] = s1(W1[13]) + W1[8] + s0(W1[0]) + W2[15];
// Round function
#pragma unroll
for(int j=0; j<16; j++)
{
uint32_t T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + myr_sha256_gpu_constantTable[j + 32] + W1[j];
uint32_t T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]);
#pragma unroll 7
for (int l=6; l >= 0; l--) regs[l+1] = regs[l];
regs[0] = T1 + T2;
regs[4] += T1;
}
////// PART 3
#pragma unroll
for(int j=0; j<2; j++)
W2[j] = s1(W1[14+j]) + W1[9+j] + s0(W1[1+j]) + W1[j];
#pragma unroll 5
for(int j=2; j<7; j++)
W2[j] = s1(W2[j-2]) + W1[9+j] + s0(W1[1+j]) + W1[j];
#pragma unroll
for(int j=7; j<15; j++)
W2[j] = s1(W2[j-2]) + W2[j-7] + s0(W1[1+j]) + W1[j];
W2[15] = s1(W2[13]) + W2[8] + s0(W2[0]) + W1[15];
// Round function
#pragma unroll
for(int j=0; j<16; j++)
{
uint32_t T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + myr_sha256_gpu_constantTable[j + 48] + W2[j];
uint32_t T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]);
#pragma unroll 7
for (int l=6; l >= 0; l--) regs[l+1] = regs[l];
regs[0] = T1 + T2;
regs[4] += T1;
}
uint32_t hash[8] = {
0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a,
0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19
};
#pragma unroll 8
for(int k=0; k<8; k++)
hash[k] += regs[k];
/////
///// 2nd Round (wegen Msg-Padding)
/////
#pragma unroll
for(int k=0; k<8; k++)
regs[k] = hash[k];
// Progress W1
#pragma unroll
for(int j=0; j<64; j++)
{
uint32_t T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + myr_sha256_gpu_constantTable2[j];
uint32_t T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]);
#pragma unroll 7
for (int k=6; k >= 0; k--) regs[k+1] = regs[k];
regs[0] = T1 + T2;
regs[4] += T1;
}
#if 0
// Full sha hash
#pragma unroll
for(int k=0; k<8; k++)
hash[k] += regs[k];
#pragma unroll
for(int k=0; k<8; k++)
message[k] = SWAB32(hash[k]);
#else
message[6] = SWAB32(hash[6] + regs[6]);
message[7] = SWAB32(hash[7] + regs[7]);
#endif
}
__global__
//__launch_bounds__(256, 6) // we want <= 40 regs
void myriadgroestl_gpu_hash_sha(uint32_t threads, uint32_t startNounce, uint32_t *hashBuffer, uint32_t *resNonces)
{
#if __CUDA_ARCH__ >= 300
const uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x);
if (thread < threads)
{
const uint32_t nonce = startNounce + thread;
uint32_t out_state[16];
uint32_t *inpHash = &hashBuffer[16 * thread];
#pragma unroll 16
for (int i=0; i < 16; i++)
out_state[i] = inpHash[i];
myriadgroestl_gpu_sha256(out_state);
if (out_state[7] <= pTarget[1] && out_state[6] <= pTarget[0])
{
uint32_t tmp = atomicExch(&resNonces[0], nonce);
if (tmp != UINT32_MAX)
resNonces[1] = tmp;
}
}
#endif
}
__global__
__launch_bounds__(256, 4)
void myriadgroestl_gpu_hash_quad(uint32_t threads, uint32_t startNounce, uint32_t *hashBuffer)
{
#if __CUDA_ARCH__ >= 300
// durch 4 dividieren, weil jeweils 4 Threads zusammen ein Hash berechnen
uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x) / 4;
if (thread < threads)
{
// GROESTL
uint32_t paddedInput[8];
#pragma unroll 8
for(int k=0; k<8; k++)
paddedInput[k] = myriadgroestl_gpu_msg[4*k+threadIdx.x%4];
uint32_t nounce = startNounce + thread;
if ((threadIdx.x % 4) == 3)
paddedInput[4] = SWAB32(nounce); // 4*4+3 = 19
uint32_t msgBitsliced[8];
to_bitslice_quad(paddedInput, msgBitsliced);
uint32_t state[8];
groestl512_progressMessage_quad(state, msgBitsliced);
uint32_t out_state[16];
from_bitslice_quad(state, out_state);
if ((threadIdx.x & 0x03) == 0)
{
uint32_t *outpHash = &hashBuffer[16 * thread];
#pragma unroll 16
for(int k=0; k<16; k++) outpHash[k] = out_state[k];
}
}
#endif
}
// Setup Function
__host__
void myriadgroestl_cpu_init(int thr_id, uint32_t threads)
{
uint32_t temp[64];
for(int i=0; i<64; i++)
temp[i] = myr_sha256_cpu_w2Table[i] + myr_sha256_cpu_constantTable[i];
cudaMemcpyToSymbol( myr_sha256_gpu_constantTable2, temp, sizeof(uint32_t) * 64 );
cudaMemcpyToSymbol( myr_sha256_gpu_constantTable,
myr_sha256_cpu_constantTable,
sizeof(uint32_t) * 64 );
// to check if the binary supports SM3+
cuda_get_arch(thr_id);
cudaMalloc(&d_outputHashes[thr_id], (size_t) 64 * threads);
cudaMalloc(&d_resultNonces[thr_id], 2 * sizeof(uint32_t));
}
__host__
void myriadgroestl_cpu_free(int thr_id)
{
cudaFree(d_outputHashes[thr_id]);
cudaFree(d_resultNonces[thr_id]);
}
__host__
void myriadgroestl_cpu_setBlock(int thr_id, void *data, uint32_t *pTargetIn)
{
uint32_t msgBlock[32] = { 0 };
memcpy(&msgBlock[0], data, 80);
msgBlock[20] = 0x80;
msgBlock[31] = 0x01000000;
cudaMemcpyToSymbol(myriadgroestl_gpu_msg, msgBlock, 128);
cudaMemcpyToSymbol(pTarget, &pTargetIn[6], 2 * sizeof(uint32_t));
}
__host__
void myriadgroestl_cpu_hash(int thr_id, uint32_t threads, uint32_t startNounce, uint32_t *resNounce)
{
uint32_t threadsperblock = 256;
cudaMemset(d_resultNonces[thr_id], 0xFF, 2 * sizeof(uint32_t));
// Compute 3.0 benutzt die registeroptimierte Quad Variante mit Warp Shuffle
// mit den Quad Funktionen brauchen wir jetzt 4 threads pro Hash, daher Faktor 4 bei der Blockzahl
const int factor = 4;
dim3 grid(factor*((threads + threadsperblock-1)/threadsperblock));
dim3 block(threadsperblock);
int dev_id = device_map[thr_id];
if (device_sm[dev_id] < 300 || cuda_arch[dev_id] < 300) {
printf("Sorry, This algo is not supported by this GPU arch (SM 3.0 required)");
return;
}
myriadgroestl_gpu_hash_quad <<< grid, block >>> (threads, startNounce, d_outputHashes[thr_id]);
dim3 grid2((threads + threadsperblock-1)/threadsperblock);
myriadgroestl_gpu_hash_sha <<< grid2, block >>> (threads, startNounce, d_outputHashes[thr_id], d_resultNonces[thr_id]);
cudaMemcpy(resNounce, d_resultNonces[thr_id], 2 * sizeof(uint32_t), cudaMemcpyDeviceToHost);
}