-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathbuffer.py
286 lines (230 loc) · 10.8 KB
/
buffer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
import numpy as np
import math
import pdb
import torch
import torch.nn as nn
import torch.nn.functional as F
class Buffer(nn.Module):
def __init__(self, args, input_size=None):
super().__init__()
self.args = args
self.k = 0.03
self.place_left = True
if input_size is None:
input_size = args.input_size
# TODO(change this:)
if args.gen:
if 'mnist' in args.dataset:
img_size = 784
economy = img_size // input_size[0]
elif 'cifar' in args.dataset:
img_size = 32 * 32 * 3
economy = img_size // (input_size[0] ** 2)
elif 'imagenet' in args.dataset:
img_size = 84 * 84 * 3
economy = img_size // (input_size[0] ** 2)
else:
economy = 1
buffer_size = args.buffer_size
print('buffer has %d slots' % buffer_size,args.buffer_size)
bx = torch.FloatTensor(buffer_size, *input_size).fill_(0)
print("bx",bx.shape)
by = torch.LongTensor(buffer_size).fill_(0)
bt = torch.LongTensor(buffer_size).fill_(0)
logits = torch.FloatTensor(buffer_size, args.n_classes).fill_(0)
feature= torch.FloatTensor(buffer_size, 512).fill_(0)
#if args.cuda:
bx = bx.cuda()#to(args.device)
by = by.cuda()#to(args.device)
bt = bt.cuda()#to(args.device)
logits = logits.cuda()#to(args.device)
feature=feature.cuda()
self.save_logits=None
self.current_index = 0
self.n_seen_so_far = 0
self.is_full = 0
# registering as buffer allows us to save the object using `torch.save`
self.register_buffer('bx', bx)
self.register_buffer('by', by)
self.register_buffer('bt', bt)
self.register_buffer('logits', logits)
self.register_buffer('feature',feature)
self.to_one_hot = lambda x : x.new(x.size(0), args.n_classes).fill_(0).scatter_(1, x.unsqueeze(1), 1)
self.arange_like = lambda x : torch.arange(x.size(0)).to(x.device)
self.shuffle = lambda x : x[torch.randperm(x.size(0))]
@property
def x(self):
return self.bx[:self.current_index]
@property
def y(self):
return self.to_one_hot(self.by[:self.current_index])
@property
def t(self):
return self.bt[:self.current_index]
@property
def valid(self):
return self.is_valid[:self.current_index]
def display(self, gen=None, epoch=-1):
from torchvision.utils import save_image
from PIL import Image
if 'cifar' in self.args.dataset:
shp = (-1, 3, 32, 32)
elif 'tinyimagenet' in self.args.dataset:
shp = (-1, 3, 64, 64)
else:
shp = (-1, 1, 28, 28)
if gen is not None:
x = gen.decode(self.x)
else:
x = self.x
save_image((x.reshape(shp) * 0.5 + 0.5), 'samples/buffer_%d.png' % epoch, nrow=int(self.current_index ** 0.5))
#Image.open('buffer_%d.png' % epoch).show()
print(self.y.sum(dim=0))
def add_reservoir(self, x, y, logits, t):
n_elem = x.size(0)
# x=x.reshape(x.size(0),1,1,-1)
place_left = max(0, self.bx.size(0) - self.current_index)
offset = min(place_left, n_elem)
# print(self.bx.shape,x[:offset].shape)
save_logits = logits is not None
self.save_logits=logits is not None
# add whatever still fits in the buffer
place_left = max(0, self.bx.size(0) - self.current_index)
if place_left:
offset = min(place_left, n_elem)
# print(offset)
# print(self.bx[self.current_index: self.current_index + offset].data.shape)
# print(x[:offset].shape)
self.bx[self.current_index: self.current_index + offset].data.copy_(x[:offset])
self.by[self.current_index: self.current_index + offset].data.copy_(y[:offset])
self.bt[self.current_index: self.current_index + offset].fill_(t)
if save_logits:
#print("存")
self.logits[self.current_index: self.current_index + offset].data.copy_(logits[:offset])
#self.feature[self.current_index: self.current_index+offset].data.copy_(feature[:offset])
self.current_index += offset
self.n_seen_so_far += offset
# everything was added
if offset == x.size(0):
return
self.place_left = False
# remove what is already in the buffer
x, y = x[place_left:], y[place_left:]
indices = torch.FloatTensor(x.size(0)).to(x.device).uniform_(0, self.n_seen_so_far).long()
valid_indices = (indices < self.bx.size(0)).long()
idx_new_data = valid_indices.nonzero().squeeze(-1)
idx_buffer = indices[idx_new_data]
self.n_seen_so_far += x.size(0)
if idx_buffer.numel() == 0:
return
assert idx_buffer.max() < self.bx.size(0), pdb.set_trace()
assert idx_buffer.max() < self.by.size(0), pdb.set_trace()
assert idx_buffer.max() < self.bt.size(0), pdb.set_trace()
assert idx_new_data.max() < x.size(0), pdb.set_trace()
assert idx_new_data.max() < y.size(0), pdb.set_trace()
# perform overwrite op
self.bx[idx_buffer] = x[idx_new_data].cuda()
self.by[idx_buffer] = y[idx_new_data].cuda()
self.bt[idx_buffer] = t
if save_logits:
self.logits[idx_buffer] = logits[idx_new_data]
#self.feature[idx_buffer] = feature[idx_new_data]
def measure_valid(self, generator, classifier):
with torch.no_grad():
# fetch valid examples
valid_indices = self.valid.nonzero()
valid_x, valid_y = self.bx[valid_indices], self.by[valid_indices]
one_hot_y = self.to_one_hot(valid_y.flatten())
hid_x = generator.idx_2_hid(valid_x)
x_hat = generator.decode(hid_x)
logits = classifier(x_hat)
_, pred = logits.max(dim=1)
one_hot_pred = self.to_one_hot(pred)
correct = one_hot_pred * one_hot_y
per_class_correct = correct.sum(dim=0)
per_class_deno = one_hot_y.sum(dim=0)
per_class_acc = per_class_correct.float() / per_class_deno.float()
self.class_weight = 1. - per_class_acc
self.valid_acc = per_class_acc
self.valid_deno = per_class_deno
def shuffle_(self):
indices = torch.randperm(self.current_index).to(self.args.device)
self.bx = self.bx[indices]
self.by = self.by[indices]
self.bt = self.bt[indices]
def delete_up_to(self, remove_after_this_idx):
self.bx = self.bx[:remove_after_this_idx]
self.by = self.by[:remove_after_this_idx]
self.br = self.bt[:remove_after_this_idx]
def sample(self, amt, exclude_task = None, ret_ind = False):
if self.save_logits:
if exclude_task is not None:
valid_indices = (self.t != exclude_task)
valid_indices = valid_indices.nonzero().squeeze()
bx, by, bt, logits= self.bx[valid_indices], self.by[valid_indices], self.bt[valid_indices],self.logits[valid_indices]
else:
bx, by, bt, logits = self.bx[:self.current_index], self.by[:self.current_index], self.bt[:self.current_index],self.logits[:self.current_index]#,self.feature[:self.current_index]
if bx.size(0) < amt:
if ret_ind:
return bx, by, logits,bt, torch.from_numpy(np.arange(bx.size(0)))
else:
return bx, by, logits,bt
else:
indices = torch.from_numpy(np.random.choice(bx.size(0), amt, replace=False))
#if self.args.cuda:
indices = indices.cuda()#to(self.args.device)
if ret_ind:
return bx[indices], by[indices],logits[indices],bt[indices], indices
else:
return bx[indices], by[indices],logits[indices], bt[indices]
else:
# return 0
if exclude_task is not None:
valid_indices = (self.t != exclude_task)
valid_indices = valid_indices.nonzero().squeeze()
bx, by, bt = self.bx[valid_indices], self.by[valid_indices], self.bt[valid_indices]
else:
bx, by, bt = self.bx[:self.current_index], self.by[:self.current_index], self.bt[:self.current_index]
if bx.size(0) < amt:
if ret_ind:
return bx, by, bt, torch.from_numpy(np.arange(bx.size(0)))
else:
return bx, by, bt
else:
indices = torch.from_numpy(np.random.choice(bx.size(0), amt, replace=False))
#if self.args.cuda:
indices = indices.cuda()#to(self.args.device)
if ret_ind:
return bx[indices], by[indices], bt[indices], indices
else:
return bx[indices], by[indices], bt[indices]
def split(self, amt):
indices = torch.randperm(self.current_index).to(self.args.device)
return indices[:amt], indices[amt:]
def onlysample(self, amt, task = None, ret_ind = False):
if self.save_logits:
if task is not None:
valid_indices = (self.t == task)
valid_indices = valid_indices.nonzero().squeeze()
bx, by, bt, logits= self.bx[valid_indices], self.by[valid_indices], self.bt[valid_indices],self.logits[valid_indices]
else:
bx, by, bt, logits = self.bx[:self.current_index], self.by[:self.current_index], self.bt[:self.current_index],self.logits[:self.current_index]
if bx.size(0) < amt:
if ret_ind:
return bx, by, logits,bt, torch.from_numpy(np.arange(bx.size(0)))
else:
return bx, by, logits,bt
else:
indices = torch.from_numpy(np.random.choice(bx.size(0), amt, replace=False))
#if self.args.cuda:
indices = indices.cuda()#to(self.args.device)
if ret_ind:
return bx[indices], by[indices],logits[indices],bt[indices], indices
else:
return bx[indices], by[indices],logits[indices], bt[indices]
else:
return 0
def get_cifar_buffer(args, hH=8, gen=None):
args.input_size = (hH, hH)
args.gen = True
return Buffer(args, gen=gen)