-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathResnet18.py
218 lines (196 loc) · 8.09 KB
/
Resnet18.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
# Copyright 2020-present, Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, Simone Calderara.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.functional import relu, avg_pool2d
from typing import List
def conv3x3(in_planes: int, out_planes: int, stride: int = 1) -> F.conv2d:
"""
Instantiates a 3x3 convolutional layer with no bias.
:param in_planes: number of input channels
:param out_planes: number of output channels
:param stride: stride of the convolution
:return: convolutional layer
"""
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=False)
class BasicBlock(nn.Module):
"""
The basic block of ResNet.
"""
expansion = 1
def __init__(self, in_planes: int, planes: int, stride: int = 1) -> None:
"""
Instantiates the basic block of the network.
:param in_planes: the number of input channels
:param planes: the number of channels (to be possibly expanded)
"""
super(BasicBlock, self).__init__()
self.conv1 = conv3x3(in_planes, planes, stride)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = conv3x3(planes, planes)
self.bn2 = nn.BatchNorm2d(planes)
self.shortcut = nn.Sequential()
if stride != 1 or in_planes != self.expansion * planes:
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, self.expansion * planes, kernel_size=1,
stride=stride, bias=False),
nn.BatchNorm2d(self.expansion * planes)
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Compute a forward pass.
:param x: input tensor (batch_size, input_size)
:return: output tensor (10)
"""
out = relu(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
out += self.shortcut(x)
out = relu(out)
return out
class ResNet(nn.Module):
"""
ResNet network architecture. Designed for complex datasets.
"""
def __init__(self, block: BasicBlock, num_blocks: List[int],
num_classes: int, nf: int) -> None:
"""
Instantiates the layers of the network.
:param block: the basic ResNet block
:param num_blocks: the number of blocks per layer
:param num_classes: the number of output classes
:param nf: the number of filters
"""
super(ResNet, self).__init__()
self.in_planes = nf
self.block = block
self.num_classes = num_classes
self.nf = nf
self.conv1 = conv3x3(3, nf * 1)
self.bn1 = nn.BatchNorm2d(nf * 1)
self.layer1 = self._make_layer(block, nf * 1, num_blocks[0], stride=1)
self.layer2 = self._make_layer(block, nf * 2, num_blocks[1], stride=2)
self.layer3 = self._make_layer(block, nf * 4, num_blocks[2], stride=2)
self.layer4 = self._make_layer(block, nf * 8, num_blocks[3], stride=2)
self.linear = nn.Linear(nf * 8 * block.expansion, num_classes)
self.simclr=nn.Linear(nf * 8 * block.expansion, 128)
self.simclr2 = nn.Linear(nf * 8 * block.expansion, 128)
#self.predict = nn.Linear(nf * 8 * block.expansion,4)
# self.simclr = nn.Sequential(torch.nn.ReLU(),nn.Linear(nf * 8 * block.expansion, 1000),torch.nn.ReLU(),nn.Linear(1000,128))
# self.simclr2 = nn.Sequential(torch.nn.ReLU(),nn.Linear(nf * 8 * block.expansion, 1000),torch.nn.ReLU(),nn.Linear(1000,128))
self._features = nn.Sequential(self.conv1,
self.bn1,
self.layer1,
self.layer2,
self.layer3,
self.layer4
)
self.classifier = self.linear
# self.label_layer=nn.Linear(1,128)
def _make_layer(self, block: BasicBlock, planes: int,
num_blocks: int, stride: int) -> nn.Module:
"""
Instantiates a ResNet layer.
:param block: ResNet basic block
:param planes: channels across the network
:param num_blocks: number of blocks
:param stride: stride
:return: ResNet layer
"""
strides = [stride] + [1] * (num_blocks - 1)
layers = []
for stride in strides:
layers.append(block(self.in_planes, planes, stride))
self.in_planes = planes * block.expansion
return nn.Sequential(*layers)
def f_train(self, x: torch.Tensor) -> torch.Tensor:
out = relu(self.bn1(self.conv1(x)))
out = self.layer1(out) # 64, 32, 32
out = self.layer2(out) # 128, 16, 16
out = self.layer3(out) # 256, 8, 8
out = self.layer4(out) # 512, 4, 4
out = avg_pool2d(out, out.shape[2]) # 512, 1, 1
out = out.view(out.size(0), -1) # 512
return out
def forward(self, x: torch.Tensor, is_simclr=False,is_predict=False) :
"""
Compute a forward pass.
:param x: input tensor (batch_size, *input_shape)
:return: output tensor (output_classes)
"""
'''
out = relu(self.bn1(self.conv1(x)))
out = self.layer1(out) # 64, 32, 32
out = self.layer2(out) # 128, 16, 16
out = self.layer3(out) # 256, 8, 8
'''
out = self.f_train(x)
'''
out = self.layer4(out) # 512, 4, 4
out = avg_pool2d(out, out.shape[2]) # 512, 1, 1
out = out.view(out.size(0), -1) # 512
'''
if is_simclr:
feature=out
out = self.simclr(out)
return feature,out
#elif is_predict:
# out = self.predict(out)
else:
#out=self.simclr(out)
out = self.linear(out)
return out
def features(self, x: torch.Tensor) -> torch.Tensor:
"""
Returns the non-activated output of the second-last layer.
:param x: input tensor (batch_size, *input_shape)
:return: output tensor (??)
"""
out = self._features(x)
out = avg_pool2d(out, out.shape[2])
feat = out.view(out.size(0), -1)
return feat
# def get_label_embedding(self,y):
# y_embedding = self.label_layer(y)
# return y_embedding
def get_params(self) -> torch.Tensor:
"""
Returns all the parameters concatenated in a single tensor.
:return: parameters tensor (??)
"""
params = []
for pp in list(self.parameters()):
params.append(pp.view(-1))
return torch.cat(params)
def set_params(self, new_params: torch.Tensor) -> None:
"""
Sets the parameters to a given value.
:param new_params: concatenated values to be set (??)
"""
assert new_params.size() == self.get_params().size()
progress = 0
for pp in list(self.parameters()):
cand_params = new_params[progress: progress +
torch.tensor(pp.size()).prod()].view(pp.size())
progress += torch.tensor(pp.size()).prod()
pp.data = cand_params
def get_grads(self) -> torch.Tensor:
"""
Returns all the gradients concatenated in a single tensor.
:return: gradients tensor (??)
"""
grads = []
for pp in list(self.parameters()):
grads.append(pp.grad.view(-1))
return torch.cat(grads)
def resnet18(nclasses: int, nf: int = 64) -> ResNet:
"""
Instantiates a ResNet18 network.
:param nclasses: number of output classes
:param nf: number of filters
:return: ResNet network
"""
return ResNet(BasicBlock, [2, 2, 2, 2], nclasses, nf=64)