-
Notifications
You must be signed in to change notification settings - Fork 3
/
model.py
338 lines (290 loc) · 14.7 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
import tensorflow as tf
slim = tf.contrib.slim
def block35(net, scale=1.0, activation_fn=tf.nn.relu, scope=None, reuse=None):
"""Builds the 35x35 resnet block."""
with tf.variable_scope(scope, 'Block35', [net], reuse=reuse):
with tf.variable_scope('Branch_0'):
tower_conv = slim.conv2d(net, 32, 1, scope='Conv2d_1x1')
with tf.variable_scope('Branch_1'):
tower_conv1_0 = slim.conv2d(net, 32, 1, scope='Conv2d_0a_1x1')
tower_conv1_1 = slim.conv2d(tower_conv1_0, 32, 3, scope='Conv2d_0b_3x3')
with tf.variable_scope('Branch_2'):
tower_conv2_0 = slim.conv2d(net, 32, 1, scope='Conv2d_0a_1x1')
tower_conv2_1 = slim.conv2d(tower_conv2_0, 48, 3, scope='Conv2d_0b_3x3')
tower_conv2_2 = slim.conv2d(tower_conv2_1, 64, 3, scope='Conv2d_0c_3x3')
mixed = tf.concat(3, [tower_conv, tower_conv1_1, tower_conv2_2])
up = slim.conv2d(mixed, net.get_shape()[3], 1, normalizer_fn=None,
activation_fn=None, scope='Conv2d_1x1')
net += scale * up
if activation_fn:
net = activation_fn(net)
return net
def block17(net, scale=1.0, activation_fn=tf.nn.relu, scope=None, reuse=None):
"""Builds the 17x17 resnet block."""
with tf.variable_scope(scope, 'Block17', [net], reuse=reuse):
with tf.variable_scope('Branch_0'):
tower_conv = slim.conv2d(net, 192, 1, scope='Conv2d_1x1')
with tf.variable_scope('Branch_1'):
tower_conv1_0 = slim.conv2d(net, 128, 1, scope='Conv2d_0a_1x1')
tower_conv1_1 = slim.conv2d(tower_conv1_0, 160, [1, 7],
scope='Conv2d_0b_1x7')
tower_conv1_2 = slim.conv2d(tower_conv1_1, 192, [7, 1],
scope='Conv2d_0c_7x1')
mixed = tf.concat(3, [tower_conv, tower_conv1_2])
up = slim.conv2d(mixed, net.get_shape()[3], 1, normalizer_fn=None,
activation_fn=None, scope='Conv2d_1x1')
net += scale * up
if activation_fn:
net = activation_fn(net)
return net
def block8(net, scale=1.0, activation_fn=tf.nn.relu, scope=None, reuse=None):
"""Builds the 8x8 resnet block."""
with tf.variable_scope(scope, 'Block8', [net], reuse=reuse):
with tf.variable_scope('Branch_0'):
tower_conv = slim.conv2d(net, 192, 1, scope='Conv2d_1x1')
with tf.variable_scope('Branch_1'):
tower_conv1_0 = slim.conv2d(net, 192, 1, scope='Conv2d_0a_1x1')
tower_conv1_1 = slim.conv2d(tower_conv1_0, 224, [1, 3],
scope='Conv2d_0b_1x3')
tower_conv1_2 = slim.conv2d(tower_conv1_1, 256, [3, 1],
scope='Conv2d_0c_3x1')
mixed = tf.concat(3, [tower_conv, tower_conv1_2])
up = slim.conv2d(mixed, net.get_shape()[3], 1, normalizer_fn=None,
activation_fn=None, scope='Conv2d_1x1')
net += scale * up
if activation_fn:
net = activation_fn(net)
return net
def inception_resnet_v2(inputs,
reuse=None,
scope='InceptionResnetV2'):
"""Creates the Inception Resnet V2 model.
Args:
inputs: a 4-D tensor of size [batch_size, height, width, 3].
num_classes: number of predicted classes.
is_training: whether is training or not.
dropout_keep_prob: float, the fraction to keep before final layer.
reuse: whether or not the network and its variables should be reused. To be
able to reuse 'scope' must be given.
scope: Optional variable_scope.
Returns:
logits: the logits outputs of the model.
end_points: the set of end_points from the inception model.
"""
end_points = {}
with tf.variable_scope(scope, 'InceptionResnetV2', [inputs], reuse=reuse):
with slim.arg_scope([slim.conv2d, slim.max_pool2d, slim.avg_pool2d],
stride=1, padding='SAME'):
# 149 x 149 x 32
net = slim.conv2d(inputs, 32, 3, stride=2, padding='VALID',
scope='Conv2d_1a_3x3')
end_points['Conv2d_1a_3x3'] = net
# 147 x 147 x 32
net = slim.conv2d(net, 32, 3, padding='VALID',
scope='Conv2d_2a_3x3')
end_points['Conv2d_2a_3x3'] = net
# 147 x 147 x 64
net = slim.conv2d(net, 64, 3, scope='Conv2d_2b_3x3')
end_points['Conv2d_2b_3x3'] = net
# 73 x 73 x 64
net = slim.max_pool2d(net, 3, stride=2, padding='VALID',
scope='MaxPool_3a_3x3')
end_points['MaxPool_3a_3x3'] = net
# 73 x 73 x 80
net = slim.conv2d(net, 80, 1, padding='VALID',
scope='Conv2d_3b_1x1')
end_points['Conv2d_3b_1x1'] = net
# 71 x 71 x 192
net = slim.conv2d(net, 192, 3, padding='VALID',
scope='Conv2d_4a_3x3')
end_points['Conv2d_4a_3x3'] = net
# 35 x 35 x 192
net = slim.max_pool2d(net, 3, stride=2, padding='VALID',
scope='MaxPool_5a_3x3')
end_points['MaxPool_5a_3x3'] = net
# 35 x 35 x 320
with tf.variable_scope('Mixed_5b'):
with tf.variable_scope('Branch_0'):
tower_conv = slim.conv2d(net, 96, 1, scope='Conv2d_1x1')
with tf.variable_scope('Branch_1'):
tower_conv1_0 = slim.conv2d(net, 48, 1, scope='Conv2d_0a_1x1')
tower_conv1_1 = slim.conv2d(tower_conv1_0, 64, 5,
scope='Conv2d_0b_5x5')
with tf.variable_scope('Branch_2'):
tower_conv2_0 = slim.conv2d(net, 64, 1, scope='Conv2d_0a_1x1')
tower_conv2_1 = slim.conv2d(tower_conv2_0, 96, 3,
scope='Conv2d_0b_3x3')
tower_conv2_2 = slim.conv2d(tower_conv2_1, 96, 3,
scope='Conv2d_0c_3x3')
with tf.variable_scope('Branch_3'):
tower_pool = slim.avg_pool2d(net, 3, stride=1, padding='SAME',
scope='AvgPool_0a_3x3')
tower_pool_1 = slim.conv2d(tower_pool, 64, 1,
scope='Conv2d_0b_1x1')
net = tf.concat(3, [tower_conv, tower_conv1_1,
tower_conv2_2, tower_pool_1])
end_points['Mixed_5b'] = net
net = slim.repeat(net, 10, block35, scale=0.17)
# 17 x 17 x 1024
with tf.variable_scope('Mixed_6a'):
with tf.variable_scope('Branch_0'):
tower_conv = slim.conv2d(net, 384, 3, stride=2, padding='VALID',
scope='Conv2d_1a_3x3')
with tf.variable_scope('Branch_1'):
tower_conv1_0 = slim.conv2d(net, 256, 1, scope='Conv2d_0a_1x1')
tower_conv1_1 = slim.conv2d(tower_conv1_0, 256, 3,
scope='Conv2d_0b_3x3')
tower_conv1_2 = slim.conv2d(tower_conv1_1, 384, 3,
stride=2, padding='VALID',
scope='Conv2d_1a_3x3')
with tf.variable_scope('Branch_2'):
tower_pool = slim.max_pool2d(net, 3, stride=2, padding='VALID',
scope='MaxPool_1a_3x3')
net = tf.concat(3, [tower_conv, tower_conv1_2, tower_pool])
end_points['Mixed_6a'] = net
net = slim.repeat(net, 20, block17, scale=0.10)
with tf.variable_scope('Mixed_7a'):
with tf.variable_scope('Branch_0'):
tower_conv = slim.conv2d(net, 256, 1, scope='Conv2d_0a_1x1')
tower_conv_1 = slim.conv2d(tower_conv, 384, 3, stride=2,
padding='VALID', scope='Conv2d_1a_3x3')
with tf.variable_scope('Branch_1'):
tower_conv1 = slim.conv2d(net, 256, 1, scope='Conv2d_0a_1x1')
tower_conv1_1 = slim.conv2d(tower_conv1, 288, 3, stride=2,
padding='VALID', scope='Conv2d_1a_3x3')
with tf.variable_scope('Branch_2'):
tower_conv2 = slim.conv2d(net, 256, 1, scope='Conv2d_0a_1x1')
tower_conv2_1 = slim.conv2d(tower_conv2, 288, 3,
scope='Conv2d_0b_3x3')
tower_conv2_2 = slim.conv2d(tower_conv2_1, 320, 3, stride=2,
padding='VALID', scope='Conv2d_1a_3x3')
with tf.variable_scope('Branch_3'):
tower_pool = slim.max_pool2d(net, 3, stride=2, padding='VALID',
scope='MaxPool_1a_3x3')
net = tf.concat(3, [tower_conv_1, tower_conv1_1,
tower_conv2_2, tower_pool])
end_points['Mixed_7a'] = net
net = slim.repeat(net, 9, block8, scale=0.20)
net = block8(net, activation_fn=None)
# GVH: Not sure if we want or need this convolution
# 8 x 8 x 2080
net = slim.conv2d(net, 1536, 1, scope='Conv2d_7b_1x1')
end_points['Conv2d_7b_1x1'] = net
# 8 x 8 x 1536
return net, end_points
def build_detection_heads(inputs, num_bboxes_per_cell, scope='Multibox', reuse=None):
endpoints = {}
with tf.variable_scope(scope, 'Multibox', [inputs], reuse=reuse):
with slim.arg_scope([slim.conv2d, slim.avg_pool2d], stride=1, padding='SAME'):
# 8 x 8 grid cells
with tf.variable_scope("8x8"):
# 8 x 8 x 2048
branch8x8 = slim.conv2d(inputs, 96, [1, 1])
# 8 x 8 x 96
branch8x8 = slim.conv2d(branch8x8, 96, [3, 3])
# 8 x 8 x 96
endpoints['8x8_locations'] = slim.conv2d(branch8x8, num_bboxes_per_cell * 4, [1, 1],
activation_fn=None, normalizer_fn=None, biases_initializer=None
)
# 8 x 8 x 96
endpoints['8x8_confidences'] = slim.conv2d(branch8x8, num_bboxes_per_cell, [1, 1],
activation_fn=None, normalizer_fn=None, biases_initializer=None
)
# 6 x 6 grid cells
with tf.variable_scope("6x6"):
# 8 x 8 x 2048
branch6x6 = slim.conv2d(inputs, 96, [3, 3])
# 8 x 8 x 96
branch6x6 = slim.conv2d(branch6x6, 96, [3, 3], padding = "VALID")
# 6 x 6 x 96
endpoints['6x6_locations'] = slim.conv2d(branch6x6, num_bboxes_per_cell * 4, [1, 1],
activation_fn=None, normalizer_fn=None, biases_initializer=None
)
# 6 x 6 x 96
endpoints['6x6_confidences'] = slim.conv2d(branch6x6, num_bboxes_per_cell, [1, 1],
activation_fn=None, normalizer_fn=None, biases_initializer=None
)
# 8 x 8 x 2048
net = slim.conv2d(inputs, 256, [3, 3], stride=2)
# 4 x 4 grid cells
with tf.variable_scope("4x4"):
# 4 x 4 x 256
branch4x4 = slim.conv2d(net, 128, [3, 3])
# 4 x 4 x 128
endpoints['4x4_locations'] = slim.conv2d(branch4x4, num_bboxes_per_cell * 4, [1, 1],
activation_fn=None, normalizer_fn=None, biases_initializer=None
)
# 4 x 4 x 128
endpoints['4x4_confidences'] = slim.conv2d(branch4x4, num_bboxes_per_cell, [1, 1],
activation_fn=None, normalizer_fn=None, biases_initializer=None
)
# 3 x 3 grid cells
with tf.variable_scope("3x3"):
# 4 x 4 x 256
branch3x3 = slim.conv2d(net, 128, [1, 1])
# 4 x 4 x 128
branch3x3 = slim.conv2d(branch3x3, 96, [2, 2], padding="VALID")
# 3 x 3 x 96
endpoints['3x3_locations'] = slim.conv2d(branch3x3, num_bboxes_per_cell * 4, [1, 1],
activation_fn=None, normalizer_fn=None, biases_initializer=None
)
# 3 x 3 x 96
endpoints['3x3_confidences'] = slim.conv2d(branch3x3, num_bboxes_per_cell, [1, 1],
activation_fn=None, normalizer_fn=None, biases_initializer=None
)
# 2 x 2 grid cells
with tf.variable_scope("2x2"):
# 4 x 4 x 256
branch2x2 = slim.conv2d(net, 128, [1, 1])
# 4 x 4 x 128
branch2x2 = slim.conv2d(branch2x2, 96, [3, 3], padding = "VALID")
# 2 x 2 x 96
endpoints['2x2_locations'] = slim.conv2d(branch2x2, num_bboxes_per_cell * 4, [1, 1],
activation_fn=None, normalizer_fn=None, biases_initializer=None
)
# 2 x 2 x 96
endpoints['2x2_confidences'] = slim.conv2d(branch2x2, num_bboxes_per_cell, [1, 1],
activation_fn=None, normalizer_fn=None, biases_initializer=None
)
# 1 x 1 grid cell
with tf.variable_scope("1x1"):
# 8 x 8 x 2048
branch1x1 = slim.avg_pool2d(inputs, [8, 8], padding="VALID")
# 1 x 1 x 2048
endpoints['1x1_locations'] = slim.conv2d(branch1x1, 4, [1, 1],
activation_fn=None, normalizer_fn=None, biases_initializer=None
)
# 1 x 1 x 2048
endpoints['1x1_confidences'] = slim.conv2d(branch1x1, 1, [1, 1],
activation_fn=None, normalizer_fn=None, biases_initializer=None
)
batch_size = tf.shape(inputs)[0]#inputs.get_shape().as_list()[0]
# reshape the locations and confidences for easy concatenation
detect_8_locations = tf.reshape(endpoints['8x8_locations'], [batch_size, -1])
detect_8_confidences = tf.reshape(endpoints['8x8_confidences'], [batch_size, -1])
detect_6_locations = tf.reshape(endpoints['6x6_locations'], [batch_size, -1])
detect_6_confidences = tf.reshape(endpoints['6x6_confidences'], [batch_size, -1])
detect_4_locations = tf.reshape(endpoints['4x4_locations'], [batch_size, -1])
detect_4_confidences = tf.reshape(endpoints['4x4_confidences'], [batch_size, -1])
detect_3_locations = tf.reshape(endpoints['3x3_locations'], [batch_size, -1])
detect_3_confidences = tf.reshape(endpoints['3x3_confidences'], [batch_size, -1])
detect_2_locations = tf.reshape(endpoints['2x2_locations'], [batch_size, -1])
detect_2_confidences = tf.reshape(endpoints['2x2_confidences'], [batch_size, -1])
detect_1_locations = tf.reshape(endpoints['1x1_locations'], [batch_size, -1])
detect_1_confidences = tf.reshape(endpoints['1x1_confidences'], [batch_size, -1])
# Collect all of the locations and confidences
locations = tf.concat(1, [detect_8_locations, detect_6_locations, detect_4_locations, detect_3_locations, detect_2_locations, detect_1_locations])
locations = tf.reshape(locations, [batch_size, -1, 4])
confidences = tf.concat(1, [detect_8_confidences, detect_6_confidences, detect_4_confidences, detect_3_confidences, detect_2_confidences, detect_1_confidences])
confidences = tf.reshape(confidences, [batch_size, -1, 1])
confidences = tf.sigmoid(confidences)
return locations, confidences, endpoints
def build(inputs, num_bboxes_per_cell, reuse=False, scope=''):
# Build the Inception-v3 model
features, _ = inception_resnet_v2(inputs, reuse=reuse, scope='InceptionResnetV2')
# Save off the original variables (for ease of restoring)
model_variables = slim.get_model_variables()
original_inception_vars = {var.op.name:var for var in model_variables}
# Add on the detection heads
locs, confs, _ = build_detection_heads(features, num_bboxes_per_cell)
return locs, confs, original_inception_vars