-
Notifications
You must be signed in to change notification settings - Fork 3
/
config.yaml.example
154 lines (112 loc) · 4.1 KB
/
config.yaml.example
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
RANDOM_SEED : 1.0
# Control how much GPU memory to utilize
SESSION_CONFIG : {
PER_PROCESS_GPU_MEMORY_FRACTION : 0.95
}
# The number of bounding box priors in a grid cell. This applies to all
# cells except the 1x1 cell, which has only a single prior. The total number of
# bounding box priors is `NUM_BBOXES_PER_CELL` * (8*8 + 6*6 + 4*4 + 3*3 + 2*2) + 1
NUM_BBOXES_PER_CELL : 7
# The maximum number of bounding boxes in a single image
MAX_NUM_BBOXES : 13
# A multiplicative weight applied to the location loss.
LOCATION_LOSS_ALPHA : 1000.0
BATCH_SIZE : 32
###################
# Image Processing and Augmentation
# The image will be resized to [INPUT_SIZE, INPUT_SIZE, 3]
INPUT_SIZE : 299
# Randomly flip the image left right, 50% chance of flipping
DO_RANDOM_FLIP_LEFT_RIGHT : true
# Randomly perturb the coordinates of the bounding boxes
# The fraction of time to do the shift, 0 is never, 1 is always
DO_RANDOM_BBOX_SHIFT : 0.5
# The maximum number of pixels to shift the coordinates
RANDOM_BBOX_SHIFT_EXTENT : 8
# Take a random crop from the image
# The fraction of time to do the crop, 0 is never, 1 is always
DO_RANDOM_CROP : 0.5
# The cropped area of the image must contain at least this fraction of ANY bounding box supplied (note ANY != EACH)
RANDOM_CROP_MIN_OBJECT_COVERED : 0.7
# The cropped area of the image must have an aspect ratio = width / height within this range.
RANDOM_CROP_ASPECT_RATIO_RANGE : [0.7, 1.4]
# The cropped area of the image must contain a fraction of the supplied image within in this range.
RANDOM_CROP_AREA_RANGE : [0.5, 1.0]
# After max_attempts failures, return the entire image.
RANDOM_CROP_MAX_ATTEMPTS : 100
# If a bounding box goes below this amount of area, then we will ignore it
RANDOM_CROP_MINIMUM_AREA : 50
# Color distortion
# The fraction of time to distort the color, 0 is never, 1 is always
DO_COLOR_DISTORTION : 0.3
# Avoids slower ops (random_hue and random_contrast)
COLOR_DISTORT_FAST : False
# END: Image Processing and Augmentation
###################
###################
# Detection Configuration
DETECTION :
USE_ORIGINAL_IMAGE : true
ORIGINAL_IMAGE_MAX_TO_KEEP : 200
USE_FLIPPED_ORIGINAL_IMAGE : false
FLIPPED_IMAGE_MAX_TO_KEEP : 100
CROPS :
- HEIGHT : 299
WIDTH : 299
HEIGHT_STRIDE : 113
WIDTH_STRIDE : 113
FLIP : false
MAX_TO_KEEP : 50
- HEIGHT : 185
WIDTH : 185
HEIGHT_STRIDE : 69
WIDTH_STRIDE : 69
FLIP : false
MAX_TO_KEEP : 50
# END: Detection Configuration
###################
###################
# Queueus, Threads and Train Data Size
# Input queues to the model
NUM_INPUT_THREADS : 4
# Capacity of the queue producing batched examples
QUEUE_CAPACITY : 2000
# Minimum size of the queue to ensure good shuffling
QUEUE_MIN : 500
NUM_TRAIN_EXAMPLES : 56945
NUM_TRAIN_ITERATIONS : 1000000
# END: Queueus, Threads and Train Data Size
###################
###################
# Basic Model Hyperparameters
# Learning Rate parameters
INITIAL_LEARNING_RATE : 0.01
NUM_EPOCHS_PER_DELAY : 4
LEARNING_RATE_DECAY_FACTOR : 0.94
LEARNING_RATE_STAIRCASE : true
RMSPROP_DECAY : 0.9
RMSPROP_MOMENTUM : 0
RMSPROP_EPSILON : 1.0
# Batch normalization. Constant governing the exponential moving average of
# the 'global' mean and variance for all activations.
BATCHNORM_MOVING_AVERAGE_DECAY : 0.9997
# The decay to use for the moving average.
MOVING_AVERAGE_DECAY : 0.9999
# END: Basic Model Hyperparameters
###################
###################
# Saving models and summaries
# How often, in seconds, to save summaries.
SAVE_SUMMARY_SECS : 30
# How often, in seconds, to save the model
SAVE_INTERVAL_SECS : 3600
# The maximum number of recent checkpoint files to keep.
MAX_TO_KEEP : 3
# In addition to keeping the most recent `max_to_keep` checkpoint files,
# you might want to keep one checkpoint file for every N hours of training
# The default value of 10,000 hours effectively disables the feature.
KEEP_CHECKPOINT_EVERY_N_HOURS : 24
# The frequency, in terms of global steps, that the loss and global step and logged.
LOG_EVERY_N_STEPS : 10
# END: Saving models and summaries
###################