output_video.mp4
output_video.mp4
output_video.mp4
- [2025.1.1] We release the code and checkpoints.
- [2024.11.18] Project page is online!
- Code release.
- Checkpoint release.
git clone https://github.com/gusongen/DOME.git
cd DOME
conda env create --file environment.yml
-
Create soft link from
data/nuscenes
to your_nuscenes_path -
Prepare the gts semantic occupancy introduced in Occ3d
-
Download our generated train/val pickle files and put them in
data/
The dataset should be organized as follows:
.
└── data/
├── nuscenes # downloaded from www.nuscenes.org/
│ ├── lidarseg
│ ├── maps
│ ├── samples
│ ├── sweeps
│ ├── v1.0-trainval
│ └── gts # download from Occ3d
├── nuscenes_infos_train_temporal_v3_scene.pkl
└── nuscenes_infos_val_temporal_v3_scene.pkl
Download the pretrained weights from here and put them in ckpts
folder.
cd resample
python launch.py \
--dst ../data/resampled_occ \
--imageset ../data/nuscenes_infos_train_temporal_v3_scene.pkl \
--data_path ../data/nuscenes
# train
sh tools/train_vae.sh
# eval
sh tools/eval_vae.sh
# visualize
sh tools/vis_vae.sh
# train
sh tools/train_diffusion.sh
# eval
sh tools/eval.sh
# visualize
sh tools/vis_diffusion.sh
This code draws inspiration from their work. We sincerely appreciate their excellent contribution.
@article{gu2024dome,
title={Dome: Taming diffusion model into high-fidelity controllable occupancy world model},
author={Gu, Songen and Yin, Wei and Jin, Bu and Guo, Xiaoyang and Wang, Junming and Li, Haodong and Zhang, Qian and Long, Xiaoxiao},
journal={arXiv preprint arXiv:2410.10429},
year={2024}
}