-
Notifications
You must be signed in to change notification settings - Fork 22
/
train_h.py
232 lines (201 loc) · 10 KB
/
train_h.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import torch
import numpy as np
import argparse
import time
import util
import matplotlib.pyplot as plt
from engine import *
import os
import shutil
import random
parser = argparse.ArgumentParser()
parser.add_argument('--device',type=str,default='cuda:0',help='')
parser.add_argument('--data',type=str,default='data/XiAn_City',help='data path')
parser.add_argument('--adjdata',type=str,default='data/XiAn_City/adj_mat.pkl',help='adj data path')
parser.add_argument('--adjdatacluster',type=str,default='data/XiAn_City/adj_mat_cluster.pkl',help='adj data path')
parser.add_argument('--transmit',type=str,default='data/XiAn_City/transmit.csv',help='data path')
parser.add_argument('--adjtype',type=str,default='doubletransition',help='adj type')
parser.add_argument('--seq_length',type=int,default=12,help='')
parser.add_argument('--nhid',type=int,default=32,help='')
parser.add_argument('--in_dim',type=int,default=1,help='inputs dimension')
parser.add_argument('--in_dim_cluster',type=int,default=2,help='inputs dimension')
parser.add_argument('--num_nodes',type=int,default=792,help='number of nodes')
parser.add_argument('--cluster_nodes',type=int,default=40,help='number of cluster')
parser.add_argument('--batch_size',type=int,default=64,help='batch size')
parser.add_argument('--learning_rate',type=float,default=0.001,help='learning rate')
parser.add_argument('--dropout',type=float,default=0.3,help='dropout rate')
parser.add_argument('--weight_decay',type=float,default=0.0000,help='weight decay rate')
parser.add_argument('--epochs',type=int,default=50,help='')
parser.add_argument('--print_every',type=int,default=50,help='')
parser.add_argument("--force", type=str, default=False,help="remove params dir", required=False)
parser.add_argument('--save',type=str,default='./garage/XiAn_City',help='save path')
parser.add_argument('--expid',type=int,default=1,help='experiment id')
parser.add_argument('--model',type=str,default='gwnet',help='adj type')
parser.add_argument('--decay', type=float, default=0.92, help='decay rate of learning rate ')
args = parser.parse_args()
seed=1
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def main():
#load data
device = torch.device(args.device)
sensor_ids, sensor_id_to_ind, adj_mx = util.load_adj(args.adjdata,args.adjtype)
sensor_ids_cluster, sensor_id_to_ind_cluster, adj_mx_cluster = util.load_adj(args.adjdatacluster,args.adjtype)
dataloader = util.load_dataset_cluster(args.data, args.batch_size, args.batch_size, args.batch_size)
#scaler = dataloader['scaler']
supports = [torch.tensor(i).to(device) for i in adj_mx]
supports_cluster = [torch.tensor(i).to(device) for i in adj_mx_cluster]
transmit_np=np.float32(np.loadtxt(args.transmit,delimiter=','))
transmit=torch.tensor(transmit_np).to(device)
print(args)
if args.model=='H_GCN':
engine = trainer7( args.in_dim,args.in_dim_cluster, args.seq_length, args.num_nodes,args.cluster_nodes,args.nhid, args.dropout,
args.learning_rate, args.weight_decay, device, supports,supports_cluster,transmit,args.decay
)
elif args.model=='H_GCN_wdf':
engine = trainer6( args.in_dim,args.in_dim_cluster, args.seq_length, args.num_nodes,args.cluster_nodes,args.nhid, args.dropout,
args.learning_rate, args.weight_decay, device, supports,supports_cluster,transmit,args.decay
)
# check parameters file
params_path=args.save+"/"+args.model
if os.path.exists(params_path) and not args.force:
raise SystemExit("Params folder exists! Select a new params path please!")
else:
if os.path.exists(params_path):
shutil.rmtree(params_path)
os.makedirs(params_path)
print('Create params directory %s' % (params_path))
print("start training...",flush=True)
his_loss =[]
val_time = []
train_time = []
for i in range(1,args.epochs+1):
train_loss = []
train_mae = []
train_mape = []
train_rmse = []
t1 = time.time()
dataloader['train_loader_cluster'].shuffle()
for iter,(x,y,x_cluster,y_cluster) in enumerate(dataloader['train_loader_cluster'].get_iterator()):
trainx = torch.Tensor(x).to(device)
trainx= trainx.transpose(1, 3)
trainy = torch.Tensor(y).to(device)
trainy = trainy.transpose(1, 3)
trainx_cluster = torch.Tensor(x_cluster).to(device)
trainx_cluster= trainx_cluster.transpose(1, 3)
trainy_cluster = torch.Tensor(y_cluster).to(device)
trainy_cluster = trainy_cluster.transpose(1, 3)
metrics = engine.train(trainx,trainx_cluster,trainy[:,0,:,:],trainy_cluster)
train_loss.append(metrics[0])
train_mae.append(metrics[1])
train_mape.append(metrics[2])
train_rmse.append(metrics[3])
#engine.scheduler.step()
t2 = time.time()
train_time.append(t2-t1)
#validation
valid_loss = []
valid_mae = []
valid_mape = []
valid_rmse = []
s1 = time.time()
for iter,(x,y,x_cluster,y_cluster) in enumerate(dataloader['val_loader_cluster'].get_iterator()):
validx = torch.Tensor(x).to(device)
validx = validx.transpose(1, 3)
validy = torch.Tensor(y).to(device)
validy = validy.transpose(1, 3)
validx_cluster = torch.Tensor(x_cluster).to(device)
validx_cluster = validx_cluster.transpose(1, 3)
validy_cluster = torch.Tensor(y_cluster).to(device)
validy_cluster = validy_cluster.transpose(1, 3)
metrics = engine.eval(validx,validx_cluster,validy[:,0,:,:],validy_cluster)
valid_loss.append(metrics[0])
valid_mae.append(metrics[1])
valid_mape.append(metrics[2])
valid_rmse.append(metrics[3])
s2 = time.time()
log = 'Epoch: {:03d}, Inference Time: {:.4f} secs'
print(log.format(i,(s2-s1)))
val_time.append(s2-s1)
mtrain_loss = np.mean(train_loss)
mtrain_mae = np.mean(train_mae)
mtrain_mape = np.mean(train_mape)
mtrain_rmse = np.mean(train_rmse)
mvalid_loss = np.mean(valid_loss)
mvalid_mae = np.mean(valid_mae)
mvalid_mape = np.mean(valid_mape)
mvalid_rmse = np.mean(valid_rmse)
his_loss.append(mvalid_loss)
log = 'Epoch: {:03d}, Train Loss: {:.4f}, Train MAE: {:.4f}, Train MAPE: {:.4f}, Train RMSE: {:.4f}, Valid Loss: {:.4f}, Valid MAE: {:.4f}, Valid MAPE: {:.4f}, Valid RMSE: {:.4f}, Training Time: {:.4f}/epoch'
print(log.format(i, mtrain_loss, mtrain_mae, mtrain_mape, mtrain_rmse, mvalid_loss, mvalid_mae, mvalid_mape, mvalid_rmse, (t2 - t1)),flush=True)
torch.save(engine.model.state_dict(), params_path+"/"+args.model+"_epoch_"+str(i)+"_"+str(round(mvalid_loss,2))+".pth")
print("Average Training Time: {:.4f} secs/epoch".format(np.mean(train_time)))
print("Average Inference Time: {:.4f} secs".format(np.mean(val_time)))
#testing
bestid = np.argmin(his_loss)
engine.model.load_state_dict(torch.load(params_path+"/"+args.model+"_epoch_"+str(bestid+1)+"_"+str(round(his_loss[bestid],2))+".pth"))
engine.model.eval()
outputs = []
realy = torch.Tensor(dataloader['y_test']).to(device)
realy = realy.transpose(1,3)[:,0,:,:]
#print(realy.shape)
for iter, (x,y,x_cluster,y_cluster) in enumerate(dataloader['test_loader_cluster'].get_iterator()):
testx = torch.Tensor(x).to(device)
testx = testx.transpose(1,3)
testx_cluster = torch.Tensor(x_cluster).to(device)
testx_cluster = testx_cluster.transpose(1, 3)
with torch.no_grad():
preds,_,_ = engine.model(testx,testx_cluster)
preds=preds.transpose(1,3)
outputs.append(preds.squeeze())
for iter, (x,y,x_cluster,y_cluster) in enumerate(dataloader['test_loader_cluster'].get_iterator()):
testx = torch.Tensor(x).to(device)
testx = testx.transpose(1,3)
testx_cluster = torch.Tensor(x_cluster).to(device)
testx_cluster = testx_cluster.transpose(1, 3)
with torch.no_grad():
_,spatial_at,parameter_adj = engine.model(testx,testx_cluster)
break
yhat = torch.cat(outputs,dim=0)
yhat = yhat[:realy.size(0),...]
#print(yhat.shape)
print("Training finished")
print("The valid loss on best model is", str(round(his_loss[bestid],4)))
amae = []
amape = []
armse = []
prediction=yhat
for i in range(12):
pred = prediction[:,:,i]
#pred = scaler.inverse_transform(yhat[:,:,i])
#prediction.append(pred)
real = realy[:,:,i]
metrics = util.metric(pred,real)
log = 'Evaluate best model on test data for horizon {:d}, Test MAE: {:.4f}, Test MAPE: {:.4f}, Test RMSE: {:.4f}'
print(log.format(i+1, metrics[0], metrics[1], metrics[2]))
amae.append(metrics[0])
amape.append(metrics[1])
armse.append(metrics[2])
log = 'On average over 12 horizons, Test MAE: {:.4f}, Test MAPE: {:.4f}, Test RMSE: {:.4f}'
print(log.format(np.mean(amae),np.mean(amape),np.mean(armse)))
torch.save(engine.model.state_dict(),params_path+"/"+args.model+"_exp"+str(args.expid)+"_best_"+str(round(his_loss[bestid],2))+".pth")
prediction_path=params_path+"/"+args.model+"_prediction_results"
ground_truth=realy.cpu().detach().numpy()
prediction=prediction.cpu().detach().numpy()
spatial_at=spatial_at.cpu().detach().numpy()
parameter_adj=parameter_adj.cpu().detach().numpy()
np.savez_compressed(
os.path.normpath(prediction_path),
prediction=prediction,
spatial_at=spatial_at,
parameter_adj=parameter_adj,
ground_truth=ground_truth
)
if __name__ == "__main__":
t1 = time.time()
main()
t2 = time.time()
print("Total time spent: {:.4f}".format(t2-t1))