-
Notifications
You must be signed in to change notification settings - Fork 44
/
Copy pathlm.py
262 lines (218 loc) · 7.91 KB
/
lm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import os
import torch
from torch.autograd import Variable
from torch import optim
import torch.nn.functional as F
import torch.nn as nn
import numpy as np
import models
import argparse
import time
import math
parser = argparse.ArgumentParser(description='lm.py')
parser.add_argument('-save_model', default='lm',
help="""Model filename to save""")
parser.add_argument('-load_model', default='',
help="""Model filename to load""")
parser.add_argument('-train', default='data/input.txt',
help="""Text filename for training""")
parser.add_argument('-valid', default='data/valid.txt',
help="""Text filename for validation""")
parser.add_argument('-rnn_type', default='mlstm',
help='mlstm, lstm or gru')
parser.add_argument('-layers', type=int, default=1,
help='Number of layers in the rnn')
parser.add_argument('-rnn_size', type=int, default=4096,
help='Size of hidden states')
parser.add_argument('-embed_size', type=int, default=128,
help='Size of embeddings')
parser.add_argument('-seq_length', type=int, default=20,
help="Maximum sequence length")
parser.add_argument('-batch_size', type=int, default=64,
help='Maximum batch size')
parser.add_argument('-learning_rate', type=float, default=0.001,
help="""Starting learning rate.""")
parser.add_argument('-dropout', type=float, default=0.1,
help='Dropout probability.')
parser.add_argument('-param_init', type=float, default=0.05,
help="""Parameters are initialized over uniform distribution
with support (-param_init, param_init)""")
parser.add_argument('-clip', type=float, default=5,
help="""Clip gradients at this value.""")
parser.add_argument('--seed', type=int, default=1234,
help='random seed')
# GPU
parser.add_argument('-cuda', action='store_true',
help="Use CUDA")
opt = parser.parse_args()
learning_rate = opt.learning_rate
path = opt.train
torch.manual_seed(opt.seed)
if opt.cuda:
torch.cuda.manual_seed(opt.seed)
def tokenize(path):
"""Tokenizes a text file."""
assert os.path.exists(path)
# Count bytes
with open(path, 'r') as f:
tokens = 0
for line in f:
tokens += len(line.encode())
print(tokens)
# Tokenize file content
with open(path, 'r') as f:
ids = torch.ByteTensor(tokens)
token = 0
for line in f:
for char in line.encode():
ids[token] = char
token += 1
return ids
def batchify(data, bsz):
nbatch = data.size(0) // bsz
data = data.narrow(0, 0, nbatch * bsz)
data = data.view(bsz, -1).t().contiguous()
return data
batch_size = opt.batch_size
hidden_size =opt.rnn_size
input_size = opt.embed_size
data_size = 256
TIMESTEPS = opt.seq_length
if len(opt.load_model)>0:
checkpoint = torch.load(opt.load_model)
embed = checkpoint['embed']
rnn = checkpoint['rnn']
else:
embed = nn.Embedding(256, input_size)
if opt.rnn_type == 'gru':
rnn = models.StackedRNN(nn.GRUCell, opt.layers, input_size, hidden_size, data_size, opt.dropout)
elif opt.rnn_type == 'mlstm':
rnn = models.StackedLSTM(models.mLSTM, opt.layers, input_size, hidden_size, data_size, opt.dropout)
else:#default to lstm
rnn = models.StackedLSTM(nn.LSTMCell, opt.layers, input_size, hidden_size, data_size, opt.dropout)
loss_fn = nn.CrossEntropyLoss()
nParams = sum([p.nelement() for p in rnn.parameters()])
print('* number of parameters: %d' % nParams)
text = tokenize(path)
text = batchify(text, batch_size)
valid = tokenize(opt.valid)
valid = batchify(valid, batch_size)
learning_rate =opt.learning_rate
n_batch = text.size(0)//TIMESTEPS
nv_batch = valid.size(0)//TIMESTEPS
print(text.size(0))
print(n_batch)
embed_optimizer = optim.SGD(embed.parameters(), lr=learning_rate)
rnn_optimizer = optim.SGD(rnn.parameters(), lr=learning_rate)
def update_lr(optimizer, lr):
for group in optimizer.param_groups:
group['lr'] = lr
return
def clip_gradient_coeff(model, clip):
"""Computes a gradient clipping coefficient based on gradient norm."""
totalnorm = 0
for p in model.parameters():
modulenorm = p.grad.data.norm()
totalnorm += modulenorm ** 2
totalnorm = math.sqrt(totalnorm)
return min(1, clip / (totalnorm + 1e-6))
def calc_grad_norm(model):
"""Computes a gradient clipping coefficient based on gradient norm."""
totalnorm = 0
for p in model.parameters():
modulenorm = p.grad.data.norm()
totalnorm += modulenorm ** 2
return math.sqrt(totalnorm)
def calc_grad_norms(model):
"""Computes a gradient clipping coefficient based on gradient norm."""
norms = []
for p in model.parameters():
modulenorm = p.grad.data.norm()
norms += [modulenorm]
return norms
def clip_gradient(model, clip):
"""Clip the gradient."""
totalnorm = 0
for p in model.parameters():
p.grad.data = p.grad.data.clamp(-clip,clip)
def make_cuda(state):
if isinstance(state, tuple):
return (state[0].cuda(), state[1].cuda())
else:
return state.cuda()
def copy_state(state):
if isinstance(state, tuple):
return (Variable(state[0].data), Variable(state[1].data))
else:
return Variable(state.data)
def evaluate():
hidden_init = rnn.state0(opt.batch_size)
if opt.cuda:
embed.cuda()
rnn.cuda()
hidden_init = make_cuda(hidden_init)
loss_avg = 0
for s in range(nv_batch-1):
batch = Variable(valid.narrow(0,s*TIMESTEPS,TIMESTEPS+1).long())
start = time.time()
hidden = hidden_init
if opt.cuda:
batch = batch.cuda()
loss = 0
for t in range(TIMESTEPS):
emb = embed(batch[t])
hidden, output = rnn(emb, hidden)
loss += loss_fn(output, batch[t+1])
hidden_init = copy_state(hidden)
loss_avg = loss_avg + loss.data[0]/TIMESTEPS
if s % 10 == 0:
print('v %s / %s loss %.4f loss avg %.4f time %.4f' % ( s, nv_batch, loss.data[0]/TIMESTEPS, loss_avg/(s+1), time.time()-start))
return loss_avg/nv_batch
def train_epoch(epoch):
hidden_init = rnn.state0(opt.batch_size)
if opt.cuda:
embed.cuda()
rnn.cuda()
hidden_init = make_cuda(hidden_init)
loss_avg = 0
for s in range(n_batch-1):
embed_optimizer.zero_grad()
rnn_optimizer.zero_grad()
batch = Variable(text.narrow(0,s*TIMESTEPS,TIMESTEPS+1).long())
start = time.time()
hidden = hidden_init
if opt.cuda:
batch = batch.cuda()
loss = 0
for t in range(TIMESTEPS):
emb = embed(batch[t])
hidden, output = rnn(emb, hidden)
loss += loss_fn(output, batch[t+1])
loss.backward()
hidden_init = copy_state(hidden)
gn =calc_grad_norm(rnn)
clip_gradient(rnn, opt.clip)
clip_gradient(embed, opt.clip)
embed_optimizer.step()
rnn_optimizer.step()
loss_avg = .99*loss_avg + .01*loss.data[0]/TIMESTEPS
if s % 10 == 0:
print('e%s %s / %s loss %.4f loss avg %.4f time %.4f grad_norm %.4f' % (epoch, s, n_batch, loss.data[0]/TIMESTEPS, loss_avg, time.time()-start, gn))
for e in range(10):
try:
train_epoch(e)
except KeyboardInterrupt:
print('Exiting from training early')
loss_avg = evaluate()
checkpoint = {
'rnn': rnn,
'embed': embed,
'opt': opt,
'epoch': e
}
save_file = ('%s_e%s_%.2f.pt' % (opt.save_model, e, loss_avg))
print('Saving to '+ save_file)
torch.save(checkpoint, save_file)
learning_rate *= 0.7
update_lr(rnn_optimizer, learning_rate)
update_lr(embed_optimizer, learning_rate)