-
Notifications
You must be signed in to change notification settings - Fork 1
/
create_power_grid.py
35 lines (26 loc) · 1.36 KB
/
create_power_grid.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import numpy as np
import pandas as pd
import xarray as xr
import datetime
from glob import glob
def wind_power(wind, a, b, c):
return a/(1+np.exp(-b*(wind+c)))
diri='/scratch/local1/m300382/gens/grib/'
fileslist=sorted(glob(diri+"*.nc"))
# merged = xr.open_mfdataset(fileslist, concat_dim='ens_member').squeeze().interpolate_na(dim='time')
datasets = [xr.open_dataset(files) for files in fileslist]
merged = xr.concat(datasets, 'ens_member').squeeze()
wind = (merged['10u']**2+merged['10v']**2)**(0.5)
temperature = merged['2t'] - 273.15
# Using the parameters obtained by the fit
power = wind_power(wind, 2500., 0.85, -7.5)
# outdset = xr.merge([wind.to_dataset(name='Wind Power'), temperature.to_dataset(name='2m Temperature')])
outdset = xr.Dataset({
'wind_power': (['ens_member', 'time', 'lat', 'lon'], power.values, {'units' : 'MW'} ),
'2m_temperature':(['ens_member', 'time', 'lat', 'lon'], temperature.values, {'units' : 'C'} )
},
coords={'time': merged.time, 'ens_member': np.arange(1,merged.dims['ens_member']+1,1) , 'lat':merged.lat.values, 'lon':merged.lon.values},
attrs={'creation date': datetime.datetime.now().strftime("%d %b %Y at %H:%M"),
'author' : 'Guido Cioni ([email protected])',
'description' : 'Wind power prediction'})
outdset.to_netcdf('energy_sources_gfs.nc')