-
Notifications
You must be signed in to change notification settings - Fork 98
/
AlgebraInterfaces.jl
555 lines (458 loc) · 12.1 KB
/
AlgebraInterfaces.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
"""
rewind_ptrs!(ptrs)
Rewind the given vector of pointers.
"""
function rewind_ptrs!(ptrs::AbstractVector{<:Integer})
@inbounds for i in (length(ptrs)-1):-1:1
ptrs[i+1] = ptrs[i]
end
ptrs[1] = 1
end
"""
length_to_ptrs!(ptrs)
Given a vector of integers, mutate it from length state to pointer state.
"""
function length_to_ptrs!(ptrs::AbstractArray{<:Integer})
ptrs[1] = 1
@inbounds for i in 1:(length(ptrs)-1)
ptrs[i+1] += ptrs[i]
end
end
function allocate_matrix end
function allocate_matrix_and_vector end
"""
allocate_vector(::Type{V},indices) where V
Allocate a vector of type `V` indexable at the indices `indices`
"""
function allocate_vector(::Type{V},indices) where V
n = length(indices)
allocate_vector(V,n)
end
function allocate_vector(::Type{V},n::Integer) where V
V(undef,n)
end
function allocate_vector(::Type{<:BlockVector{T,VV}},indices::AbstractBlockedUnitRange) where {T,VV}
V = eltype(VV)
mortar(map(ids -> allocate_vector(V,ids),blocks(indices)))
end
"""
allocate_in_range(::Type{V},matrix) where V
Allocate a vector of type `V` in the range of matrix `matrix`.
"""
function allocate_in_range(::Type{V},matrix) where V
rows = axes(matrix,1)
allocate_vector(V,rows)
end
"""
allocate_in_range(matrix::AbstractMatrix{T}) where T
Allocate a vector in the range of matrix `matrix`.
"""
function allocate_in_range(matrix::AbstractMatrix{T}) where T
allocate_in_range(Vector{T},matrix)
end
function allocate_in_range(matrix::BlockMatrix{T}) where T
V = BlockVector{T,Vector{Vector{T}}}
allocate_in_range(V,matrix)
end
"""
allocate_in_domain(::Type{V},matrix) where V
Allocate a vector of type `V` in the domain of matrix `matrix`.
"""
function allocate_in_domain(::Type{V},matrix) where V
cols = axes(matrix,2)
allocate_vector(V,cols)
end
"""
allocate_in_domain(matrix::AbstractMatrix{T}) where T
Allocate a vector in the domain of matrix `matrix`.
"""
function allocate_in_domain(matrix::AbstractMatrix{T}) where T
allocate_in_domain(Vector{T},matrix)
end
function allocate_in_domain(matrix::BlockMatrix{T}) where T
V = BlockVector{T,Vector{Vector{T}}}
allocate_in_domain(V,matrix)
end
"""
copy_entries!(a,b)
Copy the entries of array `b` into array `a`. Returns `a`.
"""
function copy_entries!(a,b)
if a !== b
copyto!(a,b)
end
a
end
"""
add_entry!(combine::Function,A,v,i...)
add_entry!(A,v,i...)
Add an entry. Returns A.
"""
@inline function add_entry!(combine::Function,args...)
@abstractmethod
end
@inline function add_entry!(args...)
add_entry!(+,args...)
end
@inline function add_entry!(combine::Function,A::AbstractMatrix,v,i,j)
aij = A[i,j]
A[i,j] = combine(aij,v)
A
end
@inline function add_entry!(combine::Function,A::AbstractVector,v,i)
ai = A[i]
A[i] = combine(ai,v)
A
end
@inline function add_entry!(combine::Function,A::AbstractMatrix,v::Nothing,i,j)
A
end
@inline function add_entry!(combine::Function,A::AbstractVector,v::Nothing,i)
A
end
# Warning: the usage of @inline and @noinline seems to have dramatic performance
# implications. Do not change it.
@noinline function add_entries!(A,vs,is,js)
add_entries!(+,A,vs,is,js)
end
@noinline function add_entries!(A,vs,is)
add_entries!(+,A,vs,is)
end
"""
add_entries!(combine::Function,A,vs,is,js)
Add several entries only for positive input indices. Returns A.
"""
@inline function add_entries!(combine::Function,A,vs,is,js)
_add_entries!(combine,A,vs,is,js)
end
@inline function _add_entries!(combine::Function,A,vs::Nothing,is,js)
for (lj,j) in enumerate(js)
if j>0
for (li,i) in enumerate(is)
if i>0
add_entry!(combine,A,nothing,i,j)
end
end
end
end
A
end
@inline function _add_entries!(combine::Function,A,vs,is,js)
for (lj,j) in enumerate(js)
if j>0
for (li,i) in enumerate(is)
if i>0
vij = vs[li,lj]
add_entry!(combine,A,vij,i,j)
end
end
end
end
A
end
@inline function add_entries!(combine::Function,A,vs,is)
_add_entries!(combine,A,vs,is)
end
@inline function _add_entries!(combine::Function,A,vs::Nothing,is)
for (li, i) in enumerate(is)
if i>0
add_entry!(A,nothing,i)
end
end
A
end
@inline function _add_entries!(combine::Function,A,vs,is)
for (li, i) in enumerate(is)
if i>0
vi = vs[li]
add_entry!(A,vi,i)
end
end
A
end
@inline function add_entries!(combine::Function,A::AbstractMatrix,vs::Nothing,is,js)
A
end
@inline function add_entries!(combine::Function,A::AbstractVector,vs::Nothing,is)
A
end
"""
muladd!(c,a,b)
Matrix multiply a*b and add to result to c. Returns c.
"""
function muladd!(c,a,b)
_muladd!(c,a,b)
c
end
@static if VERSION >= v"1.3"
function _muladd!(c,a,b)
mul!(c,a,b,1,1)
end
else
function _muladd!(c,a,b)
@assert length(c) == size(a,1)
@assert length(b) == size(a,2)
@inbounds for j in 1:size(a,2)
for i in 1:size(a,1)
c[i] += a[i,j]*b[j]
end
end
end
end
"""
axpy_entries!(α::Number, A::T, B::T) where {T<: AbstractMatrix} -> T
Efficient implementation of axpy! for sparse matrices.
"""
function axpy_entries!(α::Number, A::T, B::T) where {T<:AbstractMatrix}
iszero(α) && return B
axpy!(α, A, B)
B
end
# For sparse matrices, it is surprisingly quicker to call `@. B += α * A` than
# `axpy!(α, A, B)`.` Calling axpy! on the nonzero values of A and B is the most
# efficient approach but this is only possible when A and B have the same
# sparsity pattern. The checks add some non-negligible overhead so we make them
# optional by adding a keyword.
const cannot_axpy_entries_msg = """
It is only possible to efficiently add two sparse matrices that have the same
sparsity pattern.
"""
function axpy_entries!(
α::Number, A::T, B::T;
check::Bool=true
) where {T<:SparseMatrixCSC}
iszero(α) && return B
if check
msg = cannot_axpy_entries_msg
@check rowvals(A) == rowvals(B) msg
@check all(nzrange(A, j) == nzrange(B, j) for j in axes(A, 2)) msg
end
axpy!(α, nonzeros(A), nonzeros(B))
B
end
function axpy_entries!(
α::Number, A::T, B::T;
check::Bool=true
) where {T<:Union{SparseMatrixCSR,SymSparseMatrixCSR}}
iszero(α) && return B
if check
msg = cannot_axpy_entries_msg
@check colvals(A) == colvals(B) msg
@check all(nzrange(A, j) == nzrange(B, j) for j in axes(A, 1)) msg
end
axpy!(α, nonzeros(A), nonzeros(B))
B
end
function axpy_entries!(α::Number, A::T, B::T) where {T<:AbstractBlockMatrix}
map(blocks(A), blocks(B)) do a, b
axpy_entries!(α, a, b)
end
B
end
#
# Some API associated with assembly routines
#
# Generate a counter to count the nz values
# for an array type A
#
# a = nz_counter(A,(rows,cols))
#
# Do a loop to count the number of nz values
# Do the loop only when needed by using the LoopStyle
# For instance, when assembling a dense vector the loop
# is not needed
# A nz value is counted by calling add_entry!
#
# if LoopStyle(a) == Loop()
# add_entry!(a,nothing,i,j)
# add_entry!(a,v,i,j)
# add_entries!(a,nothing,is,js)
# add_entries!(a,vs,is,js)
# end
#
# Now we can allocate the nz values
# This can be the vectors in coo format or
# it can already be the final array for dense vectors
#
# b = nz_allocation(a)
#
# Do a loop to set entries
# We can use nothing if we want to add an entry to the sparsity
# pattern but we don't want to set a value to it yet
#
# add_entry!(b,nothing,i,j)
# add_entry!(b,v,i,j)
# add_entries!(b,nothing,is,js)
# add_entries!(b,vs,is,js)
#
# Create the final array
# from the nz values
#
# c = create_from_nz(b)
#
# We can also do a loop and update
# the entries of c
#
# fill!(c,0) or LinearAlgebra.fillstored!(c,0)
# add_entry!(c,v,i,j)
# add_entries!(c,vs,is,js)
#
struct Loop end
struct DoNotLoop end
LoopStyle(::Type) = DoNotLoop()
LoopStyle(::T) where T = LoopStyle(T)
# By default process, matrix and vector separately
# but, in some situations, create_from_nz of the vector
# can reuse data from the one computed in
# create_from_nz for the matrix (e.g., GridapDistributed)
function create_from_nz(a,b)
A = create_from_nz(a)
B = create_from_nz(b)
A,B
end
# See comment above for create_from_nz. The same applies here
# for nz_allocation.
function nz_allocation(a,b)
nz_allocation(a),nz_allocation(b)
end
# For dense arrays
struct ArrayBuilder{T}
array_type::Type{T}
end
ArrayBuilder(a::ArrayBuilder) = a
get_array_type(::ArrayBuilder{T}) where T = T
struct ArrayCounter{T,A}
axes::A
function ArrayCounter{T}(axes::A) where {T,A<:Tuple{Vararg{AbstractUnitRange}}}
new{T,A}(axes)
end
end
LoopStyle(::Type{<:ArrayCounter}) = DoNotLoop()
@inline add_entry!(c::Function,a::ArrayCounter,v,i,j) = a
@inline add_entry!(c::Function,a::ArrayCounter,v,i) = a
@inline add_entries!(c::Function,a::ArrayCounter,v,i,j) = a
@inline add_entries!(c::Function,a::ArrayCounter,v,i) = a
#nz_counter(::Type{T},axes) where T = ArrayCounter{T}(axes)
nz_counter(::ArrayBuilder{T},axes) where T = ArrayCounter{T}(axes)
nz_allocation(a::ArrayCounter{T}) where T = fill!(similar(T,map(length,a.axes)),zero(eltype(T)))
create_from_nz(a::AbstractArray) = a
# For sparse matrices
struct MinCPU end
struct MinMemory{T}
maxnnz::T
end
MinMemory() = MinMemory(nothing)
struct SparseMatrixBuilder{T,A}
matrix_type::Type{T}
approach::A
end
SparseMatrixBuilder(::Type{T}) where T = SparseMatrixBuilder(T,MinMemory())
SparseMatrixBuilder(a::SparseMatrixBuilder) = a
get_array_type(::SparseMatrixBuilder{T}) where T = T
mutable struct CounterCOO{T,A}
nnz::Int
axes::A
function CounterCOO{T}(axes::A) where {T,A<:NTuple{2,AbstractUnitRange}}
nnz = 0
new{T,A}(nnz,axes)
end
end
LoopStyle(::Type{<:CounterCOO}) = Loop()
@inline function add_entry!(::Function,a::CounterCOO{T},v,i,j) where T
if is_entry_stored(T,i,j)
a.nnz = a.nnz + 1
end
a
end
struct AllocationCOO{T,A,B,C}
counter::CounterCOO{T,A}
I::B
J::B
V::C
end
LoopStyle(::Type{<:AllocationCOO}) = Loop()
@inline function add_entry!(::typeof(+),a::AllocationCOO{T},::Nothing,i,j) where T
if is_entry_stored(T,i,j)
a.counter.nnz = a.counter.nnz + 1
k = a.counter.nnz
a.I[k] = i
a.J[k] = j
end
nothing
end
@inline function add_entry!(::typeof(+),a::AllocationCOO{T},v,i,j) where T
if is_entry_stored(T,i,j)
a.counter.nnz = a.counter.nnz + 1
k = a.counter.nnz
a.I[k] = i
a.J[k] = j
a.V[k] = v
end
nothing
end
#function nz_counter(::Type{T},axes) where T<:AbstractSparseMatrix
# CounterCOO{T}(axes)
#end
function nz_counter(::SparseMatrixBuilder{T},axes) where T<:AbstractSparseMatrix
CounterCOO{T}(axes)
end
function nz_allocation(a::CounterCOO{T}) where T
counter = CounterCOO{T}(a.axes)
I,J,V = allocate_coo_vectors(T,a.nnz)
AllocationCOO(counter,I,J,V)
end
function create_from_nz(a::AllocationCOO{T}) where T
m,n = map(length,a.counter.axes)
finalize_coo!(T,a.I,a.J,a.V,m,n)
sparse_from_coo(T,a.I,a.J,a.V,m,n)
end
# The following methods can be implemented for sparse matrices
# instead of nz_counter, nz_allocation, and create_from_nz
"""
sparse_from_coo(::Type,I,J,V,m,n)
"""
function sparse_from_coo(::Type,I,J,V,m,n)
@abstractmethod
end
"""
is_entry_stored(::Type,i,j) -> Bool
Tells if the entry with coordinates `[i,j]` will be stored in the coo vectors.
"""
function is_entry_stored(::Type,i,j)
@abstractmethod
end
"""
finalize_coo!(::Type,I,J,V,m,n)
Check and insert diagonal entries in COO vectors if needed.
"""
function finalize_coo!(::Type,I,J,V,m,n)
@abstractmethod
end
function nz_index(A::AbstractSparseMatrix,i,j)
@abstractmethod
end
"""
push_coo!(::Type, I,J,V,i,j,v)
Inserts entries in COO vectors for further building a sparse matrix of type T.
"""
function push_coo!(::Type,I,J,V,i,j,v)
@abstractmethod
end
function add_entry!(combine::Function,A::AbstractSparseMatrix,v::Number,i,j)
k = nz_index(A,i,j)
nz = nonzeros(A)
Aij = nz[k]
nz[k] = combine(Aij,v)
A
end
function copy_entries!(a::T,b::T) where T<:AbstractSparseMatrix
na = nonzeros(a)
nb = nonzeros(b)
if na !== nb
copyto!(na,nb)
end
end
function allocate_coo_vectors(
::Type{<:AbstractSparseMatrix{Tv,Ti}},n::Integer) where {Tv,Ti}
(zeros(Ti,n), zeros(Ti,n), zeros(Tv,n))
end