-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhalpern_init.jl
112 lines (89 loc) · 3.3 KB
/
halpern_init.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
using AllocationOpt
using SemioticOpt
using JSON3
using Random
using LinearAlgebra
import AllocationOpt: optimize, optimizek
function optimizek(::Val{:optimal}, x₀, Ω, ψ, σ, k, Φ, Ψ, g)
println("k: $k")
# Helper function to compute profit
obj = x -> -AllocationOpt.profit.(AllocationOpt.indexingreward.(x, Ω, ψ, Φ, Ψ), g) |> sum
# Function to get support for analytic optimisation
f(x, ixs) = ixs
# Set up optimizer
function makeanalytic(x)
return AllocationOpt.AnalyticOpt(;
x=x, Ω=Ω, ψ=ψ, σ=σ, hooks=[StopWhen((a; kws...) -> kws[:i] > 1)]
)
end
# Can't make any more swaps, so stop. Also assign the final value of x.
function stop_full(a; kws...)
v = length(kws[:z]) == length(SemioticOpt.nonzeroixs(kws[:z]))
if v
kws[:op](a, kws[:z])
end
return v
end
logger = VectorLogger(name="i", frequency=1, data=Int32[], f=(a; kws...) -> kws[:i])
alg = PairwiseGreedyOpt(;
kmax=k,
x=x₀,
xinit=x₀,
f=f,
a=makeanalytic,
hooks=[
StopWhen((a; kws...) -> kws[:f](kws[:z]) ≥ kws[:f](SemioticOpt.x(a))),
StopWhen(stop_full),
logger,
]
)
sol = minimize!(obj, alg)
return floor.(SemioticOpt.x(sol); digits=1), SemioticOpt.data(logger)[end] - 1
end
function optimize(val::Val{:optimal}, Ω, ψ, σ, K, Φ, Ψ, g, rixs)
xhalp, nhalp, phalp = AllocationOpt.optimize(Val(:fast), Ω, ψ, σ, K, Φ, Ψ, g, rixs)
halpprofit, ihalp = findmax(col -> col |> sum, eachcol(phalp))
xhalpopt = xhalp[:, ihalp]
# Helper function to compute profit
f = x -> AllocationOpt.profit.(AllocationOpt.indexingreward.(x, Ω, ψ, Φ, Ψ), g)
# Only use the eligible subgraphs
_Ω = @view Ω[rixs]
_ψ = @view ψ[rixs]
# Preallocate solution vectors for in-place operations
x = Matrix{Float64}(undef, length(Ω), K)
profits = zeros(length(Ω), K)
# Nonzeros defaults to ones and not zeros because the optimiser will always find
# at least one non-zero, meaning that the ones with zero profits will be filtered out
# during reporting. In other words, this prevents the optimiser from reporting or
# executing something that was never run.
nonzeros = ones(Int32, K)
counts = zeros(Int32, K)
# Optimize
@inbounds for k in 1:K
x[:, k] .= k == 1 ? xhalpopt : x[:, k-1]
v, i = AllocationOpt.optimizek(val, x[rixs, k], _Ω, _ψ, σ, k, Φ, Ψ, g)
x[rixs, k] .= v
counts[k] = k == 1 ? i : counts[k-1] + i
nonzeros[k] = x[:, k] |> AllocationOpt.nonzero |> length
profits[:, k] .= f(x[:, k])
# Early stoppping if converged
if k > 1
if norm(x[:, k] - x[:, k-1]) ≤ 0.1
break
end
end
end
bestprofit, bestix = dropdims(sum(profits, dims=1); dims=1) |> findmax
println("Gas: $g")
println("Max Allocations: $K")
println("PGO profit: $bestprofit")
println("PGO nonzeros: $(nonzeros[bestix])")
println("Iterations to Converge: $(counts[bestix])")
println("Halpern profit: $halpprofit")
println("Halpern nonzeros: $(nhalp[ihalp])")
return x, nonzeros, profits
end
function main()
AllocationOpt.main("config.toml")
return nothing
end