-
Notifications
You must be signed in to change notification settings - Fork 82
/
Copy pathipu_nms.py
151 lines (119 loc) · 4.91 KB
/
ipu_nms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
# Copyright (c) 2022 Graphcore Ltd. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
from pathlib import Path
from typing import List, Optional, Tuple
import numpy as np
import tensorflow as tf
from absl import logging
from tensorflow.python import ipu
from hparams_config import Config
from tf2.postprocess import (
CLASS_OFFSET,
clip_boxes,
pre_nms,
to_list,
)
T = tf.Tensor # a shortcut for typing check.
BASE_PATH = (Path(__file__).parent / "NMS").absolute()
class CustomOpsNotFoundException(Exception):
"""Raised when the custom ops .so file is not found."""
pass
def nms_op(
threshold: float,
score_threshold: float,
num_detections: int,
scores: T,
boxes: T,
classes: Optional[T] = None,
multi_nms: bool = False,
) -> Tuple[T, T, T, T, T]:
attributes = {"threshold": threshold, "scoreThreshold": score_threshold, "numDetections": num_detections}
attributes_json = json.dumps(attributes)
logging.debug(attributes_json)
output_shape = [scores.shape[0], num_detections]
outputs = {
"output_types": [tf.int32, tf.float16, tf.float16, tf.int32, tf.int32],
"output_shapes": [
tf.TensorShape(output_shape),
tf.TensorShape(output_shape),
tf.TensorShape([scores.shape[0], num_detections, 4]),
tf.TensorShape(output_shape),
tf.TensorShape([scores.shape[0]]),
],
}
if multi_nms:
inputs = [scores, boxes]
elif classes is None:
raise RuntimeError("NMS requires the classes unless running in Multiclass mode.")
else:
scores = tf.reduce_max(scores, -1)
inputs = [scores, boxes, tf.cast(classes, tf.int32)]
nms_type_str = "tf_multi" if multi_nms else "tf"
lib_path = BASE_PATH / nms_type_str / "build" / "nms_custom_op.so"
gp_path = BASE_PATH / "codelet.cpp"
if not Path(lib_path).exists():
raise CustomOpsNotFoundException(
f"`{lib_path}` not found. Please run `make` in this application's root directory first."
)
return ipu.custom_ops.precompiled_user_op(
inputs, str(lib_path), str(gp_path), attributes=attributes_json, outs=outputs
)
def ipu_nms(params, scores: T, boxes: T, classes: T, multi_nms: bool = False) -> Tuple[T, T, T, T]:
"""Non-maximum suppression.
Args:
params: a dict of parameters.
boxes: a tensor with shape [N, 4], where N is the number of boxes. Box
format is [y_min, x_min, y_max, x_max].
scores: a tensor with shape [N].
classes: a tensor with shape [N].
Returns:
A tuple (boxes, scores, classes, valid_lens), where valid_lens is a scalar
denoting the valid length of boxes/scores/classes outputs.
"""
nms_configs = params["nms_configs"]
max_output_size = nms_configs["max_output_size"]
iou_thresh = nms_configs["iou_thresh"]
score_thresh = nms_configs["score_thresh"]
nms_idx, nms_scores, nms_boxes, nms_classes, nms_lengths = nms_op(
threshold=iou_thresh,
score_threshold=score_thresh,
num_detections=max_output_size,
scores=scores,
boxes=boxes,
classes=classes,
multi_nms=multi_nms,
)
nms_classes = nms_classes + CLASS_OFFSET
return nms_boxes, nms_scores, nms_classes, nms_idx
def ipu_postprocessing(
config: Config, step_outputs: List[T], image_scales: T = None, multi_nms: bool = False
) -> Tuple[T, T, T, T]:
cls_outputs, box_outputs = step_outputs
cls_outputs = to_list(cls_outputs)
box_outputs = to_list(box_outputs)
boxes, scores, classes = pre_nms(config.as_dict(), cls_outputs, box_outputs, topk=False)
outputs = ipu_nms(config.as_dict(), scores, boxes, classes, multi_nms)
nms_boxes, nms_scores, nms_classes, nms_idx = outputs
nms_boxes = clip_boxes(nms_boxes, config.image_size)
if image_scales is not None:
scales = tf.expand_dims(tf.expand_dims(image_scales, -1), -1)
nms_boxes = nms_boxes * tf.cast(scales, nms_boxes.dtype)
return nms_boxes, nms_scores, nms_classes, nms_idx
def postprocess_onchip_nms_outputs(config: Config, det_outputs: List[np.array]) -> List[np.array]:
nms_boxes, nms_scores, nms_classes, nms_idx = det_outputs
valid_len = np.argmax(nms_idx == -1, axis=1)
all_valid = np.logical_not(np.any(nms_idx == -1, axis=1))
valid_len[all_valid] = config.nms_configs.max_output_size
return [nms_boxes, nms_scores, nms_classes, valid_len]