-
Notifications
You must be signed in to change notification settings - Fork 82
/
Copy pathbenchmarks.yml
56 lines (53 loc) · 1.43 KB
/
benchmarks.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
---
common_options: &common_options
data:
throughput:
regexp: 'throughput: *(.*?) samples\/sec,'
latency:
regexp: 'Per-batch latency avg: *(.*?) ms,'
output:
- [samples/sec, "throughput"]
- [latency(ms), "latency"]
tf2_efficientdet_d0_infer_gen_pod4:
<<: *common_options
description: EfficientDet-D0 batch-sizes 1 to 3 inference on 4 IPUs.
parameters:
batchsize: 1,2,3
cmd: >-
poprun
--vv
--num-instances 4
--num-replicas 4
python ipu_inference.py
--model-name efficientdet-d0
--micro-batch-size {batchsize}
--dataset-type generated
--random-weights
tf2_efficientdet_d0_max_batch_size_infer_gen_pod4:
<<: *common_options
description: EfficientDet-D0-D4 max batch size for 4 IPUs.
parameters:
modelname: d0,d1,d2,d3,d4
cmd: >-
poprun
--vv
--num-instances 4
--num-replicas 4
python ipu_inference.py
--model-name efficientdet-{modelname}
--dataset-type generated
--random-weights
tf2_efficientdet_d0_low_latency_infer_gen_pod4:
<<: *common_options
description: |
EfficientDet-D0 batch-sizes 1 low latency using the TF embedded
application runtime.
parameters:
modelname: d0,d1,d2,d3,d4
cmd: >-
python ipu_embedded_inference.py
--config efficientdet-low-latency
--model-name efficientdet-{modelname}
--dataset-type generated
--random-weights
--num-repeats 500