diff --git a/python/paddle/fluid/compiler.py b/python/paddle/fluid/compiler.py index 165977fe586aac..05d808c678e58d 100644 --- a/python/paddle/fluid/compiler.py +++ b/python/paddle/fluid/compiler.py @@ -574,6 +574,9 @@ def compile(self, feed_list, fetch_list, feed_var_name='feed', scope=None): feed_var = program_global_block.var(feed_name) feed_var.desc.set_need_check_feed(False) + if not hasattr(program, 'org_program'): + program.org_program = self._program + return program diff --git a/python/paddle/fluid/tests/unittests/ipu/test_ipu_inference_model_io.py b/python/paddle/fluid/tests/unittests/ipu/test_ipu_inference_model_io.py new file mode 100644 index 00000000000000..f7f96b1ba441c5 --- /dev/null +++ b/python/paddle/fluid/tests/unittests/ipu/test_ipu_inference_model_io.py @@ -0,0 +1,159 @@ +# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import unittest +import shutil + +import numpy as np +import paddle +import paddle.fluid as fluid +import paddle.fluid.compiler as compiler +import paddle.optimizer +import paddle.static +from paddle.fluid.tests.unittests.ipu.op_test_ipu import IPUOpTest + +paddle.enable_static() + + +@unittest.skipIf(not paddle.is_compiled_with_ipu(), + "core is not compiled with IPU") +class TestBase(IPUOpTest): + def setUp(self): + self.set_atol() + self.set_feed() + self.set_attrs() + + def set_feed(self): + self.feed_shape = [] + self.feed_shape.append([1, 3, 10, 10]) + + self.feed = {} + self.feed["in_0"] = np.random.uniform( + size=self.feed_shape[0]).astype(np.float32) + + self.feed_list = list(self.feed.keys()) + + def set_attrs(self): + self.attrs = {} + self.attrs['steps'] = 100 + self.attrs['save_at_step'] = 20 + self.attrs['is_training'] = True + self.attrs['opt_type'] = 'sgd' + self.attrs['path'] = 'model' + self.attrs['model_name'] = 'test' + + def _test_save(self): + scope = fluid.core.Scope() + main_prog = paddle.static.Program() + startup_prog = paddle.static.Program() + main_prog.random_seed = self.SEED + startup_prog.random_seed = self.SEED + generator = fluid.unique_name.UniqueNameGenerator() + self.full_name = '/'.join( + [self.attrs['path'], self.attrs['model_name']]) + + with fluid.unique_name.guard(generator): + with fluid.scope_guard(scope): + with paddle.static.program_guard(main_prog, startup_prog): + x = paddle.static.data( + name=self.feed_list[0], + shape=self.feed_shape[0], + dtype='float32') + conv1 = paddle.static.nn.conv2d( + x, + num_filters=3, + filter_size=3, + bias_attr=False, + name='conv2d') + loss = paddle.mean(conv1) + + if self.attrs['is_training']: + if self.attrs['opt_type'] == 'sgd': + sgd = paddle.optimizer.SGD(learning_rate=1e-2) + sgd.minimize(loss) + elif self.attrs['opt_type'] == 'adam': + adam = paddle.optimizer.Adam(learning_rate=1e-2) + adam.minimize(loss) + elif self.attrs['opt_type'] == 'lamb': + lamb = paddle.optimizer.Lamb(learning_rate=1e-2) + lamb.minimize(loss) + fetch_list = [loss.name] + + place = paddle.IPUPlace() + exe = paddle.static.Executor(place) + exe.run(startup_prog) + + ipu_strategy = compiler.get_ipu_strategy() + ipu_strategy.is_training = self.attrs['is_training'] + program = compiler.IpuCompiler( + main_prog, ipu_strategy=ipu_strategy).compile( + self.feed_list, fetch_list) + + result = [] + for i in range(self.attrs['steps']): + tmp = exe.run(program, + feed=self.feed, + fetch_list=fetch_list) + result.append(tmp) + + paddle.static.save_inference_model( + self.full_name, x, loss, exe, program=program.org_program) + + def _test_load(self, run_ipu): + if run_ipu: + place = paddle.IPUPlace() + else: + place = paddle.CPUPlace() + exe = paddle.static.Executor(place) + + [inference_program, feed_target_names, fetch_targets] = ( + paddle.static.load_inference_model(self.full_name, exe)) + + tmp = exe.run( + inference_program, feed=self.feed, fetch_list=[fetch_targets]) + + return tmp + + def test_base(self): + self._test_save() + cpu_res = self._test_load(False) + ipu_res = self._test_load(True) + + self.assertTrue(np.allclose(cpu_res, ipu_res, atol=self.atol)) + + shutil.rmtree(self.attrs['path'], True) + + +class TestAdam(TestBase): + def set_attrs(self): + self.attrs = {} + self.attrs['steps'] = 100 + self.attrs['is_training'] = True + self.attrs['opt_type'] = 'adam' + self.attrs['path'] = 'model' + self.attrs['model_name'] = 'test' + + +class TestLamb(TestBase): + def set_attrs(self): + self.attrs = {} + self.attrs['steps'] = 100 + self.attrs['is_training'] = True + self.attrs['opt_type'] = 'lamb' + self.attrs['path'] = 'model' + self.attrs['model_name'] = 'test' + + +if __name__ == "__main__": + unittest.main()