-
Notifications
You must be signed in to change notification settings - Fork 217
/
preprocess_data.py
488 lines (424 loc) · 18 KB
/
preprocess_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
import argparse
import os
from difflib import SequenceMatcher
import Levenshtein
import numpy as np
from tqdm import tqdm
from helpers import write_lines, read_parallel_lines, encode_verb_form, \
apply_reverse_transformation, SEQ_DELIMETERS, START_TOKEN
def perfect_align(t, T, insertions_allowed=0,
cost_function=Levenshtein.distance):
# dp[i, j, k] is a minimal cost of matching first `i` tokens of `t` with
# first `j` tokens of `T`, after making `k` insertions after last match of
# token from `t`. In other words t[:i] aligned with T[:j].
# Initialize with INFINITY (unknown)
shape = (len(t) + 1, len(T) + 1, insertions_allowed + 1)
dp = np.ones(shape, dtype=int) * int(1e9)
come_from = np.ones(shape, dtype=int) * int(1e9)
come_from_ins = np.ones(shape, dtype=int) * int(1e9)
dp[0, 0, 0] = 0 # The only known starting point. Nothing matched to nothing.
for i in range(len(t) + 1): # Go inclusive
for j in range(len(T) + 1): # Go inclusive
for q in range(insertions_allowed + 1): # Go inclusive
if i < len(t):
# Given matched sequence of t[:i] and T[:j], match token
# t[i] with following tokens T[j:k].
for k in range(j, len(T) + 1):
transform = \
apply_transformation(t[i], ' '.join(T[j:k]))
if transform:
cost = 0
else:
cost = cost_function(t[i], ' '.join(T[j:k]))
current = dp[i, j, q] + cost
if dp[i + 1, k, 0] > current:
dp[i + 1, k, 0] = current
come_from[i + 1, k, 0] = j
come_from_ins[i + 1, k, 0] = q
if q < insertions_allowed:
# Given matched sequence of t[:i] and T[:j], create
# insertion with following tokens T[j:k].
for k in range(j, len(T) + 1):
cost = len(' '.join(T[j:k]))
current = dp[i, j, q] + cost
if dp[i, k, q + 1] > current:
dp[i, k, q + 1] = current
come_from[i, k, q + 1] = j
come_from_ins[i, k, q + 1] = q
# Solution is in the dp[len(t), len(T), *]. Backtracking from there.
alignment = []
i = len(t)
j = len(T)
q = dp[i, j, :].argmin()
while i > 0 or q > 0:
is_insert = (come_from_ins[i, j, q] != q) and (q != 0)
j, k, q = come_from[i, j, q], j, come_from_ins[i, j, q]
if not is_insert:
i -= 1
if is_insert:
alignment.append(['INSERT', T[j:k], (i, i)])
else:
alignment.append([f'REPLACE_{t[i]}', T[j:k], (i, i + 1)])
assert j == 0
return dp[len(t), len(T)].min(), list(reversed(alignment))
def _split(token):
if not token:
return []
parts = token.split()
return parts or [token]
def apply_merge_transformation(source_tokens, target_words, shift_idx):
edits = []
if len(source_tokens) > 1 and len(target_words) == 1:
# check merge
transform = check_merge(source_tokens, target_words)
if transform:
for i in range(len(source_tokens) - 1):
edits.append([(shift_idx + i, shift_idx + i + 1), transform])
return edits
if len(source_tokens) == len(target_words) == 2:
# check swap
transform = check_swap(source_tokens, target_words)
if transform:
edits.append([(shift_idx, shift_idx + 1), transform])
return edits
def is_sent_ok(sent, delimeters=SEQ_DELIMETERS):
for del_val in delimeters.values():
if del_val in sent and del_val != delimeters["tokens"]:
return False
return True
def check_casetype(source_token, target_token):
if source_token.lower() != target_token.lower():
return None
if source_token.lower() == target_token:
return "$TRANSFORM_CASE_LOWER"
elif source_token.capitalize() == target_token:
return "$TRANSFORM_CASE_CAPITAL"
elif source_token.upper() == target_token:
return "$TRANSFORM_CASE_UPPER"
elif source_token[1:].capitalize() == target_token[1:] and source_token[0] == target_token[0]:
return "$TRANSFORM_CASE_CAPITAL_1"
elif source_token[:-1].upper() == target_token[:-1] and source_token[-1] == target_token[-1]:
return "$TRANSFORM_CASE_UPPER_-1"
else:
return None
def check_equal(source_token, target_token):
if source_token == target_token:
return "$KEEP"
else:
return None
def check_split(source_token, target_tokens):
if source_token.split("-") == target_tokens:
return "$TRANSFORM_SPLIT_HYPHEN"
else:
return None
def check_merge(source_tokens, target_tokens):
if "".join(source_tokens) == "".join(target_tokens):
return "$MERGE_SPACE"
elif "-".join(source_tokens) == "-".join(target_tokens):
return "$MERGE_HYPHEN"
else:
return None
def check_swap(source_tokens, target_tokens):
if source_tokens == [x for x in reversed(target_tokens)]:
return "$MERGE_SWAP"
else:
return None
def check_plural(source_token, target_token):
if source_token.endswith("s") and source_token[:-1] == target_token:
return "$TRANSFORM_AGREEMENT_SINGULAR"
elif target_token.endswith("s") and source_token == target_token[:-1]:
return "$TRANSFORM_AGREEMENT_PLURAL"
else:
return None
def check_verb(source_token, target_token):
encoding = encode_verb_form(source_token, target_token)
if encoding:
return f"$TRANSFORM_VERB_{encoding}"
else:
return None
def apply_transformation(source_token, target_token):
target_tokens = target_token.split()
if len(target_tokens) > 1:
# check split
transform = check_split(source_token, target_tokens)
if transform:
return transform
checks = [check_equal, check_casetype, check_verb, check_plural]
for check in checks:
transform = check(source_token, target_token)
if transform:
return transform
return None
def align_sequences(source_sent, target_sent):
# check if sent is OK
if not is_sent_ok(source_sent) or not is_sent_ok(target_sent):
return None
source_tokens = source_sent.split()
target_tokens = target_sent.split()
matcher = SequenceMatcher(None, source_tokens, target_tokens)
diffs = list(matcher.get_opcodes())
all_edits = []
for diff in diffs:
tag, i1, i2, j1, j2 = diff
source_part = _split(" ".join(source_tokens[i1:i2]))
target_part = _split(" ".join(target_tokens[j1:j2]))
if tag == 'equal':
continue
elif tag == 'delete':
# delete all words separatly
for j in range(i2 - i1):
edit = [(i1 + j, i1 + j + 1), '$DELETE']
all_edits.append(edit)
elif tag == 'insert':
# append to the previous word
for target_token in target_part:
edit = ((i1 - 1, i1), f"$APPEND_{target_token}")
all_edits.append(edit)
else:
# check merge first of all
edits = apply_merge_transformation(source_part, target_part,
shift_idx=i1)
if edits:
all_edits.extend(edits)
continue
# normalize alignments if need (make them singleton)
_, alignments = perfect_align(source_part, target_part,
insertions_allowed=0)
for alignment in alignments:
new_shift = alignment[2][0]
edits = convert_alignments_into_edits(alignment,
shift_idx=i1 + new_shift)
all_edits.extend(edits)
# get labels
labels = convert_edits_into_labels(source_tokens, all_edits)
# match tags to source tokens
sent_with_tags = add_labels_to_the_tokens(source_tokens, labels)
return sent_with_tags
def convert_edits_into_labels(source_tokens, all_edits):
# make sure that edits are flat
flat_edits = []
for edit in all_edits:
(start, end), edit_operations = edit
if isinstance(edit_operations, list):
for operation in edit_operations:
new_edit = [(start, end), operation]
flat_edits.append(new_edit)
elif isinstance(edit_operations, str):
flat_edits.append(edit)
else:
raise Exception("Unknown operation type")
all_edits = flat_edits[:]
labels = []
total_labels = len(source_tokens) + 1
if not all_edits:
labels = [["$KEEP"] for x in range(total_labels)]
else:
for i in range(total_labels):
edit_operations = [x[1] for x in all_edits if x[0][0] == i - 1
and x[0][1] == i]
if not edit_operations:
labels.append(["$KEEP"])
else:
labels.append(edit_operations)
return labels
def convert_alignments_into_edits(alignment, shift_idx):
edits = []
action, target_tokens, new_idx = alignment
source_token = action.replace("REPLACE_", "")
# check if delete
if not target_tokens:
edit = [(shift_idx, 1 + shift_idx), "$DELETE"]
return [edit]
# check splits
for i in range(1, len(target_tokens)):
target_token = " ".join(target_tokens[:i + 1])
transform = apply_transformation(source_token, target_token)
if transform:
edit = [(shift_idx, shift_idx + 1), transform]
edits.append(edit)
target_tokens = target_tokens[i + 1:]
for target in target_tokens:
edits.append([(shift_idx, shift_idx + 1), f"$APPEND_{target}"])
return edits
transform_costs = []
transforms = []
for target_token in target_tokens:
transform = apply_transformation(source_token, target_token)
if transform:
cost = 0
transforms.append(transform)
else:
cost = Levenshtein.distance(source_token, target_token)
transforms.append(None)
transform_costs.append(cost)
min_cost_idx = transform_costs.index(min(transform_costs))
# append to the previous word
for i in range(0, min_cost_idx):
target = target_tokens[i]
edit = [(shift_idx - 1, shift_idx), f"$APPEND_{target}"]
edits.append(edit)
# replace/transform target word
transform = transforms[min_cost_idx]
target = transform if transform is not None \
else f"$REPLACE_{target_tokens[min_cost_idx]}"
edit = [(shift_idx, 1 + shift_idx), target]
edits.append(edit)
# append to this word
for i in range(min_cost_idx + 1, len(target_tokens)):
target = target_tokens[i]
edit = [(shift_idx, 1 + shift_idx), f"$APPEND_{target}"]
edits.append(edit)
return edits
def add_labels_to_the_tokens(source_tokens, labels, delimeters=SEQ_DELIMETERS):
tokens_with_all_tags = []
source_tokens_with_start = [START_TOKEN] + source_tokens
for token, label_list in zip(source_tokens_with_start, labels):
all_tags = delimeters['operations'].join(label_list)
comb_record = token + delimeters['labels'] + all_tags
tokens_with_all_tags.append(comb_record)
return delimeters['tokens'].join(tokens_with_all_tags)
def convert_data_from_raw_files(source_file, target_file, output_file, chunk_size):
tagged = []
source_data, target_data = read_parallel_lines(source_file, target_file)
print(f"The size of raw dataset is {len(source_data)}")
cnt_total, cnt_all, cnt_tp = 0, 0, 0
for source_sent, target_sent in tqdm(zip(source_data, target_data)):
try:
aligned_sent = align_sequences(source_sent, target_sent)
except Exception:
aligned_sent = align_sequences(source_sent, target_sent)
if source_sent != target_sent:
cnt_tp += 1
alignments = [aligned_sent]
cnt_all += len(alignments)
try:
check_sent = convert_tagged_line(aligned_sent)
except Exception:
# debug mode
aligned_sent = align_sequences(source_sent, target_sent)
check_sent = convert_tagged_line(aligned_sent)
if "".join(check_sent.split()) != "".join(
target_sent.split()):
# do it again for debugging
aligned_sent = align_sequences(source_sent, target_sent)
check_sent = convert_tagged_line(aligned_sent)
print(f"Incorrect pair: \n{target_sent}\n{check_sent}")
continue
if alignments:
cnt_total += len(alignments)
tagged.extend(alignments)
if len(tagged) > chunk_size:
write_lines(output_file, tagged, mode='a')
tagged = []
print(f"Overall extracted {cnt_total}. "
f"Original TP {cnt_tp}."
f" Original TN {cnt_all - cnt_tp}")
if tagged:
write_lines(output_file, tagged, 'a')
def convert_labels_into_edits(labels):
all_edits = []
for i, label_list in enumerate(labels):
if label_list == ["$KEEP"]:
continue
else:
edit = [(i - 1, i), label_list]
all_edits.append(edit)
return all_edits
def get_target_sent_by_levels(source_tokens, labels):
relevant_edits = convert_labels_into_edits(labels)
target_tokens = source_tokens[:]
leveled_target_tokens = {}
if not relevant_edits:
target_sentence = " ".join(target_tokens)
return leveled_target_tokens, target_sentence
max_level = max([len(x[1]) for x in relevant_edits])
for level in range(max_level):
rest_edits = []
shift_idx = 0
for edits in relevant_edits:
(start, end), label_list = edits
label = label_list[0]
target_pos = start + shift_idx
source_token = target_tokens[target_pos] if target_pos >= 0 else START_TOKEN
if label == "$DELETE":
del target_tokens[target_pos]
shift_idx -= 1
elif label.startswith("$APPEND_"):
word = label.replace("$APPEND_", "")
target_tokens[target_pos + 1: target_pos + 1] = [word]
shift_idx += 1
elif label.startswith("$REPLACE_"):
word = label.replace("$REPLACE_", "")
target_tokens[target_pos] = word
elif label.startswith("$TRANSFORM"):
word = apply_reverse_transformation(source_token, label)
if word is None:
word = source_token
target_tokens[target_pos] = word
elif label.startswith("$MERGE_"):
# apply merge only on last stage
if level == (max_level - 1):
target_tokens[target_pos + 1: target_pos + 1] = [label]
shift_idx += 1
else:
rest_edit = [(start + shift_idx, end + shift_idx), [label]]
rest_edits.append(rest_edit)
rest_labels = label_list[1:]
if rest_labels:
rest_edit = [(start + shift_idx, end + shift_idx), rest_labels]
rest_edits.append(rest_edit)
leveled_tokens = target_tokens[:]
# update next step
relevant_edits = rest_edits[:]
if level == (max_level - 1):
leveled_tokens = replace_merge_transforms(leveled_tokens)
leveled_labels = convert_edits_into_labels(leveled_tokens,
relevant_edits)
leveled_target_tokens[level + 1] = {"tokens": leveled_tokens,
"labels": leveled_labels}
target_sentence = " ".join(leveled_target_tokens[max_level]["tokens"])
return leveled_target_tokens, target_sentence
def replace_merge_transforms(tokens):
if all(not x.startswith("$MERGE_") for x in tokens):
return tokens
target_tokens = tokens[:]
allowed_range = (1, len(tokens) - 1)
for i in range(len(tokens)):
target_token = tokens[i]
if target_token.startswith("$MERGE"):
if target_token.startswith("$MERGE_SWAP") and i in allowed_range:
target_tokens[i - 1] = tokens[i + 1]
target_tokens[i + 1] = tokens[i - 1]
target_tokens[i: i + 1] = []
target_line = " ".join(target_tokens)
target_line = target_line.replace(" $MERGE_HYPHEN ", "-")
target_line = target_line.replace(" $MERGE_SPACE ", "")
return target_line.split()
def convert_tagged_line(line, delimeters=SEQ_DELIMETERS):
label_del = delimeters['labels']
source_tokens = [x.split(label_del)[0]
for x in line.split(delimeters['tokens'])][1:]
labels = [x.split(label_del)[1].split(delimeters['operations'])
for x in line.split(delimeters['tokens'])]
assert len(source_tokens) + 1 == len(labels)
levels_dict, target_line = get_target_sent_by_levels(source_tokens, labels)
return target_line
def main(args):
convert_data_from_raw_files(args.source, args.target, args.output_file, args.chunk_size)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-s', '--source',
help='Path to the source file',
required=True)
parser.add_argument('-t', '--target',
help='Path to the target file',
required=True)
parser.add_argument('-o', '--output_file',
help='Path to the output file',
required=True)
parser.add_argument('--chunk_size',
type=int,
help='Dump each chunk size.',
default=1000000)
args = parser.parse_args()
main(args)