-
Notifications
You must be signed in to change notification settings - Fork 194
/
inference_vision.py
259 lines (204 loc) · 10.1 KB
/
inference_vision.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
import os
import torch
from litgpt.generate.base import next_token_image_batch
import soundfile as sf
from utils.snac_utils import layershift, reconscruct_snac, reconstruct_tensors, get_time_str
from utils.snac_utils import get_snac, generate_audio_data
import clip
import inference
from tqdm import tqdm
from inference import OmniInference, load_model, load_audio, download_model
from inference import text_vocabsize, padded_text_vocabsize, get_text_stream
from PIL import Image
torch.set_printoptions(sci_mode=False)
_image = inference._image
_eoimage = inference._eoimage
_pad_t = inference._pad_t
_input_t = inference._input_t
_answer_t = inference._answer_t
_eot = inference._eot
_eoa = inference._eoa
_pad_a = inference._pad_a
_input_a = inference._input_a
_answer_a = inference._answer_a
def get_input_ids_ImageQA_ATBatch(mel, leng, whispermodel, device):
with torch.no_grad():
mel = mel.unsqueeze(0).to(device)
audio_feature = whispermodel.embed_audio(mel)[0][:leng]
audio_len = audio_feature.size(0)
input_ids = []
input_ids_item = [[] for i in range(8)]
for i in range(7):
input_ids_item[i] = [layershift(_image,i)] + [layershift(_pad_a,i)] * 50 + [layershift(_eoimage,i)]
input_ids_item[i] += [layershift(_input_a,i)]+[layershift(_pad_a,i)]*(audio_len)+[layershift(_eoa,i)]
input_ids_item[i] += [layershift(_answer_a,i)]
input_ids_item[-1] = [_pad_t]* (52 + 2 + audio_len) + [_answer_t]
input_ids_item = [torch.tensor(item) for item in input_ids_item]
input_ids.append(input_ids_item)
input_ids_item = [[] for i in range(8)]
for i in range(7):
input_ids_item[i] = [layershift(_image,i)] + [layershift(_pad_a,i)] * 50 + [layershift(_eoimage,i)]
input_ids_item[i] += [layershift(_input_a,i)]+[layershift(_pad_a,i)]*(audio_len)+[layershift(_eoa,i)] + [layershift(_pad_a,i)]
input_ids_item[-1] = [_pad_t]* (52 + 2 + audio_len) + [_answer_t]
input_ids_item = [torch.tensor(item) for item in input_ids_item]
input_ids.append(input_ids_item)
stacked_inputids = [[] for _ in range(8)]
for i in range(2):
for j in range(8):
stacked_inputids[j].append(input_ids[i][j])
stacked_inputids = [torch.stack(tensors) for tensors in stacked_inputids]
return torch.stack([audio_feature,audio_feature]), stacked_inputids
def load_clip_model(ckpt_dir, device):
clip_model_path = ckpt_dir + "/ViT-B-32.pt"
if not os.path.exists(clip_model_path):
clip_model_path = "ViT-B/32"
clipmodel, clippreprocess = clip.load(clip_model_path, device=device)
return clipmodel, clippreprocess
class OmniVisionInference(OmniInference):
def __init__(self, ckpt_dir='./checkpoint', device='cuda:0'):
self.device = device
if not os.path.exists(ckpt_dir):
print(f"checkpoint directory {ckpt_dir} not found, downloading from huggingface")
download_model(ckpt_dir)
self.fabric, self.model, self.text_tokenizer, self.snacmodel, self.whispermodel = load_model(ckpt_dir, device)
self.clipmodel, self.clippreprocess = load_clip_model(ckpt_dir, device)
def warm_up(self,
audio_sample='./data/samples/vision_qa_audio.wav',
image_sample='./data/samples/vision_qa_image.jpg'
):
for _ in self.run_vision_AA_batch_stream(audio_sample, image_sample,
save_path="./data/samples/vision_qa_output.wav",
warm_up=True):
pass
@torch.inference_mode()
def run_vision_AA_batch_stream(self, audio_path, image_path,
stream_stride=4,
max_returned_tokens=2048,
temperature=0.9,
top_k=1,
top_p=1.0,
eos_id_a=_eoa,
eos_id_t=_eot,
pad_id=_pad_t,
save_path=None,
warm_up=False
):
with self.fabric.init_tensor():
self.model.set_kv_cache(batch_size=2)
model = self.model
mel, leng = load_audio(audio_path)
img = Image.open(image_path)
audio_feature, input_ids = get_input_ids_ImageQA_ATBatch(mel, leng, self.whispermodel, self.device)
ima = self.clippreprocess(img).unsqueeze(0).to(self.device)
ima_feature = self.clipmodel.encode_image(ima).squeeze(0).to(self.device)
ima_feature = torch.stack([ima_feature.clone(),ima_feature.clone()]).to(self.device)
leng = [leng,leng]
task = ['ImageQA_A','ImageQA_AT']
T = input_ids[0].size(1)
assert max_returned_tokens > T, f"max_returned_tokens {max_returned_tokens} should be greater than audio length {T}"
if model.max_seq_length < max_returned_tokens - 1:
raise NotImplementedError(
f"max_seq_length {model.max_seq_length} needs to be >= {max_returned_tokens - 1}"
)
list_output = [[] for i in range(8)]
tokens_A , token_T = next_token_image_batch(
model,
audio_feature.to(torch.float32).to(self.device),
ima_feature.to(torch.float32).to(self.device) ,
input_ids ,
whisper_lens = leng ,
task = task,
input_pos = torch.arange(0, T, device=self.device),
temperature=temperature,
top_k=top_k,
top_p=top_p
)
for i in range(7): list_output[i].append(tokens_A[i].tolist()[0])
list_output[7].append(token_T.tolist()[0])
text_end = False
index = 1
nums_generate = stream_stride
begin_generate = False
current_index = 0
input_pos = torch.tensor([T], device=self.device)
model_input_ids = [[] for i in range(8)]
for i in range(7):
tokens_A[i] = tokens_A[i].clone() + padded_text_vocabsize+ i * 4160
model_input_ids[i].append(tokens_A[i].clone().to(self.device).to(torch.int32))
model_input_ids[i].append(torch.tensor([layershift(4097,i)],device=self.device))
model_input_ids[i] = torch.stack(model_input_ids[i])
model_input_ids[-1].append(token_T.clone().to(torch.int32))
model_input_ids[-1].append(token_T.clone().to(torch.int32))
model_input_ids[-1] = torch.stack(model_input_ids[-1])
text_index = 0
is_text_end = False
for _ in tqdm(range(2, max_returned_tokens - T + 1)):
tokens_A , token_T = next_token_image_batch(model, None , None ,
input_ids = model_input_ids,
whisper_lens= None,
task = None,
input_pos = input_pos,
temperature=temperature,
top_k=top_k,
top_p=top_p)
if text_end:
token_T = torch.tensor([_pad_t], device=self.device)
if tokens_A[-1] == eos_id_a:
break
if token_T == eos_id_t:
text_end = True
for i in range(7): list_output[i].append(tokens_A[i].tolist()[0])
list_output[7].append(token_T.tolist()[0])
if index == 7:
begin_generate = True
if begin_generate:
current_index += 1
if current_index == nums_generate:
current_index = 0
snac = get_snac(list_output,index,nums_generate)
audio_stream = generate_audio_data(snac, self.snacmodel, self.device)
if is_text_end:
text_stream = ""
else:
text_stream, text_index, is_text_end = get_text_stream(list_output, text_index, self.text_tokenizer)
yield (audio_stream, text_stream)
if warm_up:
break
input_pos = input_pos.add_(1)
model_input_ids = [[] for i in range(8)]
for i in range(7):
tokens_A[i] = tokens_A[i].clone() + padded_text_vocabsize+ i * 4160
model_input_ids[i].append(tokens_A[i].clone().to(self.device).to(torch.int32))
model_input_ids[i].append(torch.tensor([layershift(4097,i)],device=self.device))
model_input_ids[i] = torch.stack(model_input_ids[i])
model_input_ids[-1].append(token_T.clone().to(torch.int32))
model_input_ids[-1].append(token_T.clone().to(torch.int32))
model_input_ids[-1] = torch.stack(model_input_ids[-1])
index += 1
text_tokens = list_output[-1]
if text_vocabsize in text_tokens:
text_tokens = text_tokens[:text_tokens.index(text_vocabsize)]
res_text = self.text_tokenizer.decode(torch.tensor(text_tokens))
print(f"text output: {res_text}")
if save_path is not None:
audiolist = reconscruct_snac(list_output)
audio = reconstruct_tensors(audiolist)
with torch.inference_mode():
audio_hat = self.snacmodel.decode(audio)
sf.write(save_path, audio_hat.squeeze().cpu().numpy(), 24000)
model.clear_kv_cache()
def test_vision_infer():
client = OmniVisionInference()
client.warm_up()
input_audio_path = './data/samples/vision_qa_audio.wav'
input_image_path = './data/samples/vision_qa_image.jpg'
res_text = ""
for audio_stream, text_stream in client.run_vision_AA_batch_stream(
input_audio_path,
input_image_path,
save_path="./vision_qa_output.wav"
):
res_text += text_stream
print(f"text_output: {res_text}")
if __name__ == "__main__":
test_vision_infer()