-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathvisual_doom_test.py
278 lines (198 loc) · 8.02 KB
/
visual_doom_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
import torch
import torch.nn as nn
import numpy as np
import random
from collections import deque
import vizdoom as vzd
import cv2
import time
import torchvision
from itertools import count
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
class QNetwork(nn.Module):
def __init__(self):
super(QNetwork, self).__init__()
# self.resnet = models.resnet18(pretrained=False)
# # self.resnet = models.resnet50(pretrained=False)
# self.relu = nn.ReLU()
# self.resnet.fc = nn.Linear(self.resnet.fc.in_features, 64)
#
# self.fc_value = nn.Linear(64, 256)
# self.fc_adv = nn.Linear(64, 256)
#
# self.value = nn.Linear(256, 1)
# self.adv = nn.Linear(256, 3)
self.relu = nn.ReLU()
self.conv1 = nn.Conv2d(3, 64, 6, stride=2, padding=2) # 64 * 64 * 3 -> 32 * 32 * 64
self.conv2_1 = nn.Conv2d(64, 64, 3, stride=1, padding=1) # 32 * 32 * 64 -> 32 * 32 * 64
self.conv2_2 = nn.Conv2d(64, 64, 3, stride=1, padding=1) # 32 * 32 * 64 -> 32 * 32 * 64
self.conv3 = nn.Conv2d(64, 64, 6, stride=2, padding=2) # 32 * 32 * 64 -> 16 * 16 * 64
self.conv4_1 = nn.Conv2d(64, 64, 3, stride=1, padding=1) # 16 * 16 * 64 -> 16 * 16 * 64
self.conv4_2 = nn.Conv2d(64, 64, 3, stride=1, padding=1)
self.conv5 = nn.Conv2d(64, 64, 6, stride=2, padding=2) # 16 * 16 * 64 -> 8 * 8 * 64
self.fc = nn.Linear(8 * 8 * 64, 1024)
self.value = nn.Linear(1024, 1)
self.adv = nn.Linear(1024, 3)
def forward(self, x):
# x = self.resnet(x)
# value = self.relu(self.fc_value(x))
# adv = self.relu(self.fc_adv(x))
#
# value = self.value(value)
# adv = self.adv(adv)
#
# advAverage = torch.mean(adv, dim=1, keepdim=True)
# Q = value + adv - advAverage
x = self.relu(self.conv1(x))
# print(x.shape)
y = self.relu(self.conv2_1(x))
y = self.conv2_2(y)
# print(y.shape)
x = self.relu(x + y)
x = self.relu(self.conv3(x))
y = self.relu(self.conv4_1(x))
y = self.conv4_2(y)
x = self.relu(x + y)
x = self.relu(self.conv5(x))
# print(x.shape)
x = self.relu(self.fc(x.view(x.size(0), -1)))
value = self.value(x)
adv = self.adv(x)
advAverage = torch.mean(adv, dim=1, keepdim=True)
Q = value + adv - advAverage
return Q
def select_action(self, state):
with torch.no_grad():
Q = self.forward(state)
action_index = torch.argmax(Q, dim=1)
return action_index.item()
class Memory(object):
def __init__(self, memory_size: int) -> None:
self.memory_size = memory_size
self.buffer = deque(maxlen=self.memory_size)
def add(self, experience) -> None:
self.buffer.append(experience)
def size(self):
return len(self.buffer)
def sample(self, batch_size: int, continuous: bool = True):
if batch_size > len(self.buffer):
batch_size = len(self.buffer)
if continuous:
rand = random.randint(0, len(self.buffer) - batch_size)
return [self.buffer[i] for i in range(rand, rand + batch_size)]
else:
indexes = np.random.choice(np.arange(len(self.buffer)), size=batch_size, replace=False)
return [self.buffer[i] for i in indexes]
def clear(self):
self.buffer.clear()
def preprocess(image_frame): # transform w * h * d to d * w * h
image_frame = cv2.resize(image_frame, (64, 64))
trans = torchvision.transforms.ToTensor()
image_frame = trans(image_frame)
# print(image_frame)
return image_frame.numpy()
onlineQNetwork = QNetwork().to(device)
targetQNetwork = QNetwork().to(device)
targetQNetwork.load_state_dict(onlineQNetwork.state_dict())
optimizer = torch.optim.Adam(onlineQNetwork.parameters(), lr=1e-5)
GAMMA = 0.99
EXPLORE = 20000
INITIAL_EPSILON = 0.1
FINAL_EPSILON = 0.0001
REPLAY_MEMORY = 50000
BATCH = 16
UPDATE_STEPS = 4
memory_replay = Memory(REPLAY_MEMORY)
epsilon = INITIAL_EPSILON
# epsilon = 0
learn_steps = 0
begin_learn = False
episode_reward = 0
previous_episode_reward = episode_reward
env = vzd.DoomGame()
# Sets path to additional resources wad file which is basically your scenario wad.
# If not specified default maps will be used and it's pretty much useless... unless you want to play good old Doom.
env.set_doom_scenario_path("basic.wad")
# Sets map to start (scenario .wad files can contain many maps).
env.set_doom_map("map01")
# Sets resolution. Default is 320X240
env.set_screen_resolution(vzd.ScreenResolution.RES_640X480)
# Sets the screen buffer format. Not used here but now you can change it. Default is CRCGCB.
env.set_screen_format(vzd.ScreenFormat.RGB24)
# Enables depth buffer.
# env.set_depth_buffer_enabled(True)
# Enables labeling of in env objects labeling.
# env.set_labels_buffer_enabled(True)
# Enables buffer with top down map of the current episode/level.
env.set_automap_buffer_enabled(True)
# Enables information about all objects present in the current episode/level.
env.set_objects_info_enabled(True)
# Enables information about all sectors (map layout).
env.set_sectors_info_enabled(True)
# Sets other rendering options (all of these options except crosshair are enabled (set to True) by default)
env.set_render_hud(False)
env.set_render_minimal_hud(False) # If hud is enabled
env.set_render_crosshair(False)
env.set_render_weapon(True)
env.set_render_decals(False) # Bullet holes and blood on the walls
env.set_render_particles(False)
env.set_render_effects_sprites(False) # Smoke and blood
env.set_render_messages(False) # In-env messages
env.set_render_corpses(False)
env.set_render_screen_flashes(True) # Effect upon taking damage or picking up items
# Adds buttons that will be allowed.
env.add_available_button(vzd.Button.MOVE_LEFT)
env.add_available_button(vzd.Button.MOVE_RIGHT)
env.add_available_button(vzd.Button.ATTACK)
# Adds env variables that will be included in state.
env.add_available_game_variable(vzd.GameVariable.AMMO2)
# Causes episodes to finish after 200 tics (actions)
env.set_episode_timeout(200)
# Makes episodes start after 10 tics (~after raising the weapon)
env.set_episode_start_time(10)
# Makes the window appear (turned on by default)
env.set_window_visible(True)
# Turns on the sound. (turned off by default)
env.set_sound_enabled(True)
# Sets the livin reward (for each move) to -1
env.set_living_reward(-1)
# Sets ViZDoom mode (PLAYER, ASYNC_PLAYER, SPECTATOR, ASYNC_SPECTATOR, PLAYER mode is default)
env.set_mode(vzd.Mode.PLAYER)
# Enables engine output to console.
#env.set_console_enabled(True)
# Initialize the env. Further configuration won't take any effect from now on.
env.init()
# move-left move-right attack
actions = [[True, False, False], [False, True, False], [False, False, True]]
epsilon = 0
onlineQNetwork.load_state_dict(torch.load('doom-policy.para'))
def print_action(action, reward):
if action == 0:
print('move left, reward is : ', reward)
elif action == 1:
print('move right, reward is : ', reward)
else:
print('attack, reward is : ', reward)
for epoch in count():
env.new_episode()
episode_reward = 0
while not env.is_episode_finished():
state = env.get_state()
frame = preprocess(state.screen_buffer)
p = random.random()
if p < epsilon:
action = random.randint(0, 2)
else:
tensor_frame = torch.FloatTensor(frame).unsqueeze(0).to(device)
action = onlineQNetwork.select_action(tensor_frame)
reward = env.make_action(actions[action])
episode_reward += reward
# print_action(action, reward)
done = env.is_episode_finished()
if done is True:
next_frame = np.zeros((3, 64, 64))
else:
next_state = env.get_state()
next_frame = preprocess(next_state.screen_buffer)
time.sleep(0.3)
print('Ep {}\tMoving average score: {:.2f}\t'.format(epoch, episode_reward))