-
Notifications
You must be signed in to change notification settings - Fork 43
/
app.py
637 lines (429 loc) · 23.6 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
import time
import numpy as np
import pandas as pd
import streamlit as st
from streamlit_option_menu import option_menu
from streamlit_extras.add_vertical_space import add_vertical_space
from PyPDF2 import PdfReader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import FAISS
from langchain.chat_models import ChatOpenAI
from langchain.chains.question_answering import load_qa_chain
from selenium import webdriver
from selenium.webdriver.common.by import By
from selenium.webdriver.common.keys import Keys
from selenium.common.exceptions import NoSuchElementException
import warnings
warnings.filterwarnings('ignore')
def streamlit_config():
# page configuration
st.set_page_config(page_title='Resume Analyzer AI', layout="wide")
# page header transparent color
page_background_color = """
<style>
[data-testid="stHeader"]
{
background: rgba(0,0,0,0);
}
</style>
"""
st.markdown(page_background_color, unsafe_allow_html=True)
# title and position
st.markdown(f'<h1 style="text-align: center;">Resume Analyzer AI</h1>',
unsafe_allow_html=True)
class resume_analyzer:
def pdf_to_chunks(pdf):
# read pdf and it returns memory address
pdf_reader = PdfReader(pdf)
# extrat text from each page separately
text = ""
for page in pdf_reader.pages:
text += page.extract_text()
# Split the long text into small chunks.
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=700,
chunk_overlap=200,
length_function=len)
chunks = text_splitter.split_text(text=text)
return chunks
def openai(openai_api_key, chunks, analyze):
# Using OpenAI service for embedding
embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key)
# Facebook AI Similarity Serach library help us to convert text data to numerical vector
vectorstores = FAISS.from_texts(chunks, embedding=embeddings)
# compares the query and chunks, enabling the selection of the top 'K' most similar chunks based on their similarity scores.
docs = vectorstores.similarity_search(query=analyze, k=3)
# creates an OpenAI object, using the ChatGPT 3.5 Turbo model
llm = ChatOpenAI(model='gpt-3.5-turbo', api_key=openai_api_key)
# question-answering (QA) pipeline, making use of the load_qa_chain function
chain = load_qa_chain(llm=llm, chain_type='stuff')
response = chain.run(input_documents=docs, question=analyze)
return response
def summary_prompt(query_with_chunks):
query = f''' need to detailed summarization of below resume and finally conclude them
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
{query_with_chunks}
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
'''
return query
def resume_summary():
with st.form(key='Summary'):
# User Upload the Resume
add_vertical_space(1)
pdf = st.file_uploader(label='Upload Your Resume', type='pdf')
add_vertical_space(1)
# Enter OpenAI API Key
col1,col2 = st.columns([0.6,0.4])
with col1:
openai_api_key = st.text_input(label='Enter OpenAI API Key', type='password')
add_vertical_space(2)
# Click on Submit Button
submit = st.form_submit_button(label='Submit')
add_vertical_space(1)
add_vertical_space(3)
if submit:
if pdf is not None and openai_api_key != '':
try:
with st.spinner('Processing...'):
pdf_chunks = resume_analyzer.pdf_to_chunks(pdf)
summary_prompt = resume_analyzer.summary_prompt(query_with_chunks=pdf_chunks)
summary = resume_analyzer.openai(openai_api_key=openai_api_key, chunks=pdf_chunks, analyze=summary_prompt)
st.markdown(f'<h4 style="color: orange;">Summary:</h4>', unsafe_allow_html=True)
st.write(summary)
except Exception as e:
st.markdown(f'<h5 style="text-align: center;color: orange;">{e}</h5>', unsafe_allow_html=True)
elif pdf is None:
st.markdown(f'<h5 style="text-align: center;color: orange;">Please Upload Your Resume</h5>', unsafe_allow_html=True)
elif openai_api_key == '':
st.markdown(f'<h5 style="text-align: center;color: orange;">Please Enter OpenAI API Key</h5>', unsafe_allow_html=True)
def strength_prompt(query_with_chunks):
query = f'''need to detailed analysis and explain of the strength of below resume and finally conclude them
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
{query_with_chunks}
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
'''
return query
def resume_strength():
with st.form(key='Strength'):
# User Upload the Resume
add_vertical_space(1)
pdf = st.file_uploader(label='Upload Your Resume', type='pdf')
add_vertical_space(1)
# Enter OpenAI API Key
col1,col2 = st.columns([0.6,0.4])
with col1:
openai_api_key = st.text_input(label='Enter OpenAI API Key', type='password')
add_vertical_space(2)
# Click on Submit Button
submit = st.form_submit_button(label='Submit')
add_vertical_space(1)
add_vertical_space(3)
if submit:
if pdf is not None and openai_api_key != '':
try:
with st.spinner('Processing...'):
pdf_chunks = resume_analyzer.pdf_to_chunks(pdf)
summary_prompt = resume_analyzer.summary_prompt(query_with_chunks=pdf_chunks)
summary = resume_analyzer.openai(openai_api_key=openai_api_key, chunks=pdf_chunks, analyze=summary_prompt)
strength_prompt = resume_analyzer.strength_prompt(query_with_chunks=summary)
strength = resume_analyzer.openai(openai_api_key=openai_api_key, chunks=pdf_chunks, analyze=strength_prompt)
st.markdown(f'<h4 style="color: orange;">Strength:</h4>', unsafe_allow_html=True)
st.write(strength)
except Exception as e:
st.markdown(f'<h5 style="text-align: center;color: orange;">{e}</h5>', unsafe_allow_html=True)
elif pdf is None:
st.markdown(f'<h5 style="text-align: center;color: orange;">Please Upload Your Resume</h5>', unsafe_allow_html=True)
elif openai_api_key == '':
st.markdown(f'<h5 style="text-align: center;color: orange;">Please Enter OpenAI API Key</h5>', unsafe_allow_html=True)
def weakness_prompt(query_with_chunks):
query = f'''need to detailed analysis and explain of the weakness of below resume and how to improve make a better resume.
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
{query_with_chunks}
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
'''
return query
def resume_weakness():
with st.form(key='Weakness'):
# User Upload the Resume
add_vertical_space(1)
pdf = st.file_uploader(label='Upload Your Resume', type='pdf')
add_vertical_space(1)
# Enter OpenAI API Key
col1,col2 = st.columns([0.6,0.4])
with col1:
openai_api_key = st.text_input(label='Enter OpenAI API Key', type='password')
add_vertical_space(2)
# Click on Submit Button
submit = st.form_submit_button(label='Submit')
add_vertical_space(1)
add_vertical_space(3)
if submit:
if pdf is not None and openai_api_key != '':
try:
with st.spinner('Processing...'):
pdf_chunks = resume_analyzer.pdf_to_chunks(pdf)
summary_prompt = resume_analyzer.summary_prompt(query_with_chunks=pdf_chunks)
summary = resume_analyzer.openai(openai_api_key=openai_api_key, chunks=pdf_chunks, analyze=summary_prompt)
weakness_prompt = resume_analyzer.weakness_prompt(query_with_chunks=summary)
weakness = resume_analyzer.openai(openai_api_key=openai_api_key, chunks=pdf_chunks, analyze=weakness_prompt)
st.markdown(f'<h4 style="color: orange;">Weakness and Suggestions:</h4>', unsafe_allow_html=True)
st.write(weakness)
except Exception as e:
st.markdown(f'<h5 style="text-align: center;color: orange;">{e}</h5>', unsafe_allow_html=True)
elif pdf is None:
st.markdown(f'<h5 style="text-align: center;color: orange;">Please Upload Your Resume</h5>', unsafe_allow_html=True)
elif openai_api_key == '':
st.markdown(f'<h5 style="text-align: center;color: orange;">Please Enter OpenAI API Key</h5>', unsafe_allow_html=True)
def job_title_prompt(query_with_chunks):
query = f''' what are the job roles i apply to likedin based on below?
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
{query_with_chunks}
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
'''
return query
def job_title_suggestion():
with st.form(key='Job Titles'):
# User Upload the Resume
add_vertical_space(1)
pdf = st.file_uploader(label='Upload Your Resume', type='pdf')
add_vertical_space(1)
# Enter OpenAI API Key
col1,col2 = st.columns([0.6,0.4])
with col1:
openai_api_key = st.text_input(label='Enter OpenAI API Key', type='password')
add_vertical_space(2)
# Click on Submit Button
submit = st.form_submit_button(label='Submit')
add_vertical_space(1)
add_vertical_space(3)
if submit:
if pdf is not None and openai_api_key != '':
try:
with st.spinner('Processing...'):
pdf_chunks = resume_analyzer.pdf_to_chunks(pdf)
summary_prompt = resume_analyzer.summary_prompt(query_with_chunks=pdf_chunks)
summary = resume_analyzer.openai(openai_api_key=openai_api_key, chunks=pdf_chunks, analyze=summary_prompt)
job_title_prompt = resume_analyzer.job_title_prompt(query_with_chunks=summary)
job_title = resume_analyzer.openai(openai_api_key=openai_api_key, chunks=pdf_chunks, analyze=job_title_prompt)
st.markdown(f'<h4 style="color: orange;">Job Titles:</h4>', unsafe_allow_html=True)
st.write(job_title)
except Exception as e:
st.markdown(f'<h5 style="text-align: center;color: orange;">{e}</h5>', unsafe_allow_html=True)
elif pdf is None:
st.markdown(f'<h5 style="text-align: center;color: orange;">Please Upload Your Resume</h5>', unsafe_allow_html=True)
elif openai_api_key == '':
st.markdown(f'<h5 style="text-align: center;color: orange;">Please Enter OpenAI API Key</h5>', unsafe_allow_html=True)
class linkedin_scraper:
def webdriver_setup():
options = webdriver.ChromeOptions()
options.add_argument('--headless')
options.add_argument('--no-sandbox')
options.add_argument('--disable-dev-shm-usage')
driver = webdriver.Chrome(options=options)
driver.maximize_window()
return driver
def get_userinput():
add_vertical_space(2)
with st.form(key='linkedin_scarp'):
add_vertical_space(1)
col1,col2,col3 = st.columns([0.5,0.3,0.2], gap='medium')
with col1:
job_title_input = st.text_input(label='Job Title')
job_title_input = job_title_input.split(',')
with col2:
job_location = st.text_input(label='Job Location', value='India')
with col3:
job_count = st.number_input(label='Job Count', min_value=1, value=1, step=1)
# Submit Button
add_vertical_space(1)
submit = st.form_submit_button(label='Submit')
add_vertical_space(1)
return job_title_input, job_location, job_count, submit
def build_url(job_title, job_location):
b = []
for i in job_title:
x = i.split()
y = '%20'.join(x)
b.append(y)
job_title = '%2C%20'.join(b)
link = f"https://in.linkedin.com/jobs/search?keywords={job_title}&location={job_location}&locationId=&geoId=102713980&f_TPR=r604800&position=1&pageNum=0"
return link
def open_link(driver, link):
while True:
# Break the Loop if the Element is Found, Indicating the Page Loaded Correctly
try:
driver.get(link)
driver.implicitly_wait(5)
time.sleep(3)
driver.find_element(by=By.CSS_SELECTOR, value='span.switcher-tabs__placeholder-text.m-auto')
return
# Retry Loading the Page
except NoSuchElementException:
continue
def link_open_scrolldown(driver, link, job_count):
# Open the Link in LinkedIn
linkedin_scraper.open_link(driver, link)
# Scroll Down the Page
for i in range(0,job_count):
# Simulate clicking the Page Up button
body = driver.find_element(by=By.TAG_NAME, value='body')
body.send_keys(Keys.PAGE_UP)
# Locate the sign-in modal dialog
try:
driver.find_element(by=By.CSS_SELECTOR,
value="button[data-tracking-control-name='public_jobs_contextual-sign-in-modal_modal_dismiss']>icon>svg").click()
except:
pass
# Scoll down the Page to End
driver.execute_script("window.scrollTo(0, document.body.scrollHeight);")
driver.implicitly_wait(2)
# Click on See More Jobs Button if Present
try:
x = driver.find_element(by=By.CSS_SELECTOR, value="button[aria-label='See more jobs']").click()
driver.implicitly_wait(5)
except:
pass
def job_title_filter(scrap_job_title, user_job_title_input):
# User Job Title Convert into Lower Case
user_input = [i.lower().strip() for i in user_job_title_input]
# scraped Job Title Convert into Lower Case
scrap_title = [i.lower().strip() for i in [scrap_job_title]]
# Verify Any User Job Title in the scraped Job Title
confirmation_count = 0
for i in user_input:
if all(j in scrap_title[0] for j in i.split()):
confirmation_count += 1
# Return Job Title if confirmation_count greater than 0 else return NaN
if confirmation_count > 0:
return scrap_job_title
else:
return np.nan
def scrap_company_data(driver, job_title_input, job_location):
# scraping the Company Data
company = driver.find_elements(by=By.CSS_SELECTOR, value='h4[class="base-search-card__subtitle"]')
company_name = [i.text for i in company]
location = driver.find_elements(by=By.CSS_SELECTOR, value='span[class="job-search-card__location"]')
company_location = [i.text for i in location]
title = driver.find_elements(by=By.CSS_SELECTOR, value='h3[class="base-search-card__title"]')
job_title = [i.text for i in title]
url = driver.find_elements(by=By.XPATH, value='//a[contains(@href, "/jobs/")]')
website_url = [i.get_attribute('href') for i in url]
# combine the all data to single dataframe
df = pd.DataFrame(company_name, columns=['Company Name'])
df['Job Title'] = pd.DataFrame(job_title)
df['Location'] = pd.DataFrame(company_location)
df['Website URL'] = pd.DataFrame(website_url)
# Return Job Title if there are more than 1 matched word else return NaN
df['Job Title'] = df['Job Title'].apply(lambda x: linkedin_scraper.job_title_filter(x, job_title_input))
# Return Location if User Job Location in Scraped Location else return NaN
df['Location'] = df['Location'].apply(lambda x: x if job_location.lower() in x.lower() else np.nan)
# Drop Null Values and Reset Index
df = df.dropna()
df.reset_index(drop=True, inplace=True)
return df
def scrap_job_description(driver, df, job_count):
# Get URL into List
website_url = df['Website URL'].tolist()
# Scrap the Job Description
job_description = []
description_count = 0
for i in range(0, len(website_url)):
try:
# Open the Link in LinkedIn
linkedin_scraper.open_link(driver, website_url[i])
# Click on Show More Button
driver.find_element(by=By.CSS_SELECTOR, value='button[data-tracking-control-name="public_jobs_show-more-html-btn"]').click()
driver.implicitly_wait(5)
time.sleep(1)
# Get Job Description
description = driver.find_elements(by=By.CSS_SELECTOR, value='div[class="show-more-less-html__markup relative overflow-hidden"]')
data = [i.text for i in description][0]
# Check Description length and Duplicate
if len(data.strip()) > 0 and data not in job_description:
job_description.append(data)
description_count += 1
else:
job_description.append('Description Not Available')
# If any unexpected issue
except:
job_description.append('Description Not Available')
# Check Description Count reach User Job Count
if description_count == job_count:
break
# Filter the Job Description
df = df.iloc[:len(job_description), :]
# Add Job Description in Dataframe
df['Job Description'] = pd.DataFrame(job_description, columns=['Description'])
df['Job Description'] = df['Job Description'].apply(lambda x: np.nan if x=='Description Not Available' else x)
df = df.dropna()
df.reset_index(drop=True, inplace=True)
return df
def display_data_userinterface(df_final):
# Display the Data in User Interface
add_vertical_space(1)
if len(df_final) > 0:
for i in range(0, len(df_final)):
st.markdown(f'<h3 style="color: orange;">Job Posting Details : {i+1}</h3>', unsafe_allow_html=True)
st.write(f"Company Name : {df_final.iloc[i,0]}")
st.write(f"Job Title : {df_final.iloc[i,1]}")
st.write(f"Location : {df_final.iloc[i,2]}")
st.write(f"Website URL : {df_final.iloc[i,3]}")
with st.expander(label='Job Desription'):
st.write(df_final.iloc[i, 4])
add_vertical_space(3)
else:
st.markdown(f'<h5 style="text-align: center;color: orange;">No Matching Jobs Found</h5>',
unsafe_allow_html=True)
def main():
# Initially set driver to None
driver = None
try:
job_title_input, job_location, job_count, submit = linkedin_scraper.get_userinput()
add_vertical_space(2)
if submit:
if job_title_input != [] and job_location != '':
with st.spinner('Chrome Webdriver Setup Initializing...'):
driver = linkedin_scraper.webdriver_setup()
with st.spinner('Loading More Job Listings...'):
# build URL based on User Job Title Input
link = linkedin_scraper.build_url(job_title_input, job_location)
# Open the Link in LinkedIn and Scroll Down the Page
linkedin_scraper.link_open_scrolldown(driver, link, job_count)
with st.spinner('scraping Job Details...'):
# Scraping the Company Name, Location, Job Title and URL Data
df = linkedin_scraper.scrap_company_data(driver, job_title_input, job_location)
# Scraping the Job Descriptin Data
df_final = linkedin_scraper. scrap_job_description(driver, df, job_count)
# Display the Data in User Interface
linkedin_scraper.display_data_userinterface(df_final)
# If User Click Submit Button and Job Title is Empty
elif job_title_input == []:
st.markdown(f'<h5 style="text-align: center;color: orange;">Job Title is Empty</h5>',
unsafe_allow_html=True)
elif job_location == '':
st.markdown(f'<h5 style="text-align: center;color: orange;">Job Location is Empty</h5>',
unsafe_allow_html=True)
except Exception as e:
add_vertical_space(2)
st.markdown(f'<h5 style="text-align: center;color: orange;">{e}</h5>', unsafe_allow_html=True)
finally:
if driver:
driver.quit()
# Streamlit Configuration Setup
streamlit_config()
add_vertical_space(2)
with st.sidebar:
add_vertical_space(4)
option = option_menu(menu_title='', options=['Summary', 'Strength', 'Weakness', 'Job Titles', 'Linkedin Jobs'],
icons=['house-fill', 'database-fill', 'pass-fill', 'list-ul', 'linkedin'])
if option == 'Summary':
resume_analyzer.resume_summary()
elif option == 'Strength':
resume_analyzer.resume_strength()
elif option == 'Weakness':
resume_analyzer.resume_weakness()
elif option == 'Job Titles':
resume_analyzer.job_title_suggestion()
elif option == 'Linkedin Jobs':
linkedin_scraper.main()