forked from KhronosGroup/Vulkan-ValidationLayers
-
Notifications
You must be signed in to change notification settings - Fork 1
/
subresource_adapter.h
895 lines (796 loc) · 35.8 KB
/
subresource_adapter.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
/* Copyright (c) 2019-2021 The Khronos Group Inc.
* Copyright (c) 2019-2021 Valve Corporation
* Copyright (c) 2019-2021 LunarG, Inc.
* Copyright (C) 2019-2021 Google Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* John Zulauf <[email protected]>
*
*/
#pragma once
#ifndef SUBRESOURCE_ADAPTER_H_
#define SUBRESOURCE_ADAPTER_H_
#include <algorithm>
#include <array>
#include <vector>
#include "range_vector.h"
#include "vk_layer_data.h"
#ifndef SPARSE_CONTAINER_UNIT_TEST
#include "vulkan/vulkan.h"
#else
#include "vk_snippets.h"
#endif
class IMAGE_STATE;
namespace subresource_adapter {
class RangeEncoder;
using IndexType = uint64_t;
template <typename Element>
using Range = sparse_container::range<Element>;
using IndexRange = Range<IndexType>;
using WritePolicy = sparse_container::value_precedence;
using split_op_keep_both = sparse_container::split_op_keep_both;
using split_op_keep_lower = sparse_container::split_op_keep_lower;
using split_op_keep_upper = sparse_container::split_op_keep_upper;
// Interface for aspect specific traits objects (now isolated in the cpp file)
class AspectParameters {
public:
virtual ~AspectParameters() {}
static const AspectParameters* Get(VkImageAspectFlags);
typedef uint32_t (*MaskIndexFunc)(VkImageAspectFlags);
virtual VkImageAspectFlags AspectMask() const = 0;
virtual MaskIndexFunc MaskToIndexFunction() const = 0;
virtual uint32_t AspectCount() const = 0;
virtual const VkImageAspectFlagBits* AspectBits() const = 0;
};
struct Subresource : public VkImageSubresource {
uint32_t aspect_index;
Subresource() : VkImageSubresource({0, 0, 0}), aspect_index(0) {}
Subresource(const Subresource& from) = default;
Subresource(const RangeEncoder& encoder, const VkImageSubresource& subres);
Subresource(VkImageAspectFlags aspect_mask_, uint32_t mip_level_, uint32_t array_layer_, uint32_t aspect_index_)
: VkImageSubresource({aspect_mask_, mip_level_, array_layer_}), aspect_index(aspect_index_) {}
Subresource(VkImageAspectFlagBits aspect_, uint32_t mip_level_, uint32_t array_layer_, uint32_t aspect_index_)
: Subresource(static_cast<VkImageAspectFlags>(aspect_), mip_level_, array_layer_, aspect_index_) {}
};
// Subresource is encoded in (from slowest varying to fastest)
// aspect_index
// mip_level_index
// array_layer_index
// into continuous index ranges
class RangeEncoder {
public:
static constexpr uint32_t kMaxSupportedAspect = 4;
// The default constructor for default iterators
RangeEncoder()
: limits_(),
full_range_(),
mip_size_(0),
aspect_size_(0),
aspect_bits_(nullptr),
mask_index_function_(nullptr),
encode_function_(nullptr),
decode_function_(nullptr),
lower_bound_function_(nullptr),
lower_bound_with_start_function_(nullptr),
aspect_base_{0, 0, 0} {}
RangeEncoder(const VkImageSubresourceRange& full_range, const AspectParameters* param);
// Create the encoder suitable to the full range (aspect mask *must* be canonical)
RangeEncoder(const VkImageSubresourceRange& full_range)
: RangeEncoder(full_range, AspectParameters::Get(full_range.aspectMask)) {}
RangeEncoder(const RangeEncoder& from) = default;
;
inline bool InRange(const VkImageSubresource& subres) const {
bool in_range = (subres.mipLevel < limits_.mipLevel) && (subres.arrayLayer < limits_.arrayLayer) &&
(subres.aspectMask & limits_.aspectMask);
return in_range;
}
inline bool InRange(const VkImageSubresourceRange& range) const {
bool in_range = (range.baseMipLevel < limits_.mipLevel) && ((range.baseMipLevel + range.levelCount) <= limits_.mipLevel) &&
(range.baseArrayLayer < limits_.arrayLayer) &&
((range.baseArrayLayer + range.layerCount) <= limits_.arrayLayer) &&
(range.aspectMask & limits_.aspectMask);
return in_range;
}
inline IndexType Encode(const Subresource& pos) const { return (this->*(encode_function_))(pos); }
inline IndexType Encode(const VkImageSubresource& subres) const { return Encode(Subresource(*this, subres)); }
Subresource Decode(const IndexType& index) const { return (this->*decode_function_)(index); }
inline Subresource BeginSubresource(const VkImageSubresourceRange& range) const {
const auto aspect_index = LowerBoundFromMask(range.aspectMask);
Subresource begin(aspect_bits_[aspect_index], range.baseMipLevel, range.baseArrayLayer, aspect_index);
return begin;
}
// This version assumes the mask must have at least one bit matching limits_.aspectMask
// Suitable for getting a starting value from a range
inline uint32_t LowerBoundFromMask(VkImageAspectFlags mask) const {
assert(mask & limits_.aspectMask);
return (this->*(lower_bound_function_))(mask);
}
// This version allows for a mask that can (starting at start) not have any bits set matching limits_.aspectMask
// Suitable for seeking the *next* value for a range
inline uint32_t LowerBoundFromMask(VkImageAspectFlags mask, uint32_t start) const {
if (start < limits_.aspect_index) {
return (this->*(lower_bound_with_start_function_))(mask, start);
}
return limits_.aspect_index;
}
inline IndexType AspectSize() const { return aspect_size_; }
inline IndexType MipSize() const { return mip_size_; }
inline const Subresource& Limits() const { return limits_; }
inline const VkImageSubresourceRange& FullRange() const { return full_range_; }
inline IndexType SubresourceCount() const { return AspectSize() * Limits().aspect_index; }
inline VkImageAspectFlags AspectMask() const { return limits_.aspectMask; }
inline VkImageAspectFlagBits AspectBit(uint32_t aspect_index) const {
RANGE_ASSERT(aspect_index < limits_.aspect_index);
return aspect_bits_[aspect_index];
}
inline IndexType AspectBase(uint32_t aspect_index) const {
RANGE_ASSERT(aspect_index < limits_.aspect_index);
return aspect_base_[aspect_index];
}
inline VkImageSubresource MakeVkSubresource(const Subresource& subres) const {
VkImageSubresource vk_subres = {static_cast<VkImageAspectFlags>(aspect_bits_[subres.aspect_index]), subres.mipLevel,
subres.arrayLayer};
return vk_subres;
}
protected:
void PopulateFunctionPointers();
IndexType Encode1AspectArrayOnly(const Subresource& pos) const;
IndexType Encode1AspectMipArray(const Subresource& pos) const;
IndexType Encode1AspectMipOnly(const Subresource& pos) const;
IndexType EncodeAspectArrayOnly(const Subresource& pos) const;
IndexType EncodeAspectMipArray(const Subresource& pos) const;
IndexType EncodeAspectMipOnly(const Subresource& pos) const;
// Use compiler to create the aspect count variants...
// For ranges that only have a single mip level...
template <uint32_t N>
Subresource DecodeAspectArrayOnly(const IndexType& index) const {
if ((N > 2) && (index >= aspect_base_[2])) {
return Subresource(aspect_bits_[2], 0, static_cast<uint32_t>(index - aspect_base_[2]), 2);
} else if ((N > 1) && (index >= aspect_base_[1])) {
return Subresource(aspect_bits_[1], 0, static_cast<uint32_t>(index - aspect_base_[1]), 1);
}
// NOTE: aspect_base_[0] is always 0... here and below
return Subresource(aspect_bits_[0], 0, static_cast<uint32_t>(index), 0);
}
// For ranges that only have a single array layer...
template <uint32_t N>
Subresource DecodeAspectMipOnly(const IndexType& index) const {
if ((N > 2) && (index >= aspect_base_[2])) {
return Subresource(aspect_bits_[2], static_cast<uint32_t>(index - aspect_base_[2]), 0, 2);
} else if ((N > 1) && (index >= aspect_base_[1])) {
return Subresource(aspect_bits_[1], static_cast<uint32_t>(index - aspect_base_[1]), 0, 1);
}
return Subresource(aspect_bits_[0], static_cast<uint32_t>(index), 0, 0);
}
// For ranges that only have both > 1 layer and level
template <uint32_t N>
Subresource DecodeAspectMipArray(const IndexType& index) const {
assert(limits_.aspect_index <= N);
uint32_t aspect_index = 0;
if ((N > 2) && (index >= aspect_base_[2])) {
aspect_index = 2;
} else if ((N > 1) && (index >= aspect_base_[1])) {
aspect_index = 1;
}
// aspect_base_[0] is always zero, so use the template to cheat
const IndexType base_index = index - ((N == 1) ? 0 : aspect_base_[aspect_index]);
const IndexType mip_level = base_index / mip_size_;
const IndexType mip_start = mip_level * mip_size_;
const IndexType array_offset = base_index - mip_start;
return Subresource(aspect_bits_[aspect_index], static_cast<uint32_t>(mip_level), static_cast<uint32_t>(array_offset),
aspect_index);
}
uint32_t LowerBoundImpl1(VkImageAspectFlags aspect_mask) const;
uint32_t LowerBoundImpl2(VkImageAspectFlags aspect_mask) const;
uint32_t LowerBoundImpl3(VkImageAspectFlags aspect_mask) const;
uint32_t LowerBoundWithStartImpl1(VkImageAspectFlags aspect_mask, uint32_t start) const;
uint32_t LowerBoundWithStartImpl2(VkImageAspectFlags aspect_mask, uint32_t start) const;
uint32_t LowerBoundWithStartImpl3(VkImageAspectFlags aspect_mask, uint32_t start) const;
Subresource limits_;
private:
VkImageSubresourceRange full_range_;
const size_t mip_size_;
const size_t aspect_size_;
const VkImageAspectFlagBits* const aspect_bits_;
uint32_t (*const mask_index_function_)(VkImageAspectFlags);
IndexType (RangeEncoder::*encode_function_)(const Subresource&) const;
Subresource (RangeEncoder::*decode_function_)(const IndexType&) const;
uint32_t (RangeEncoder::*lower_bound_function_)(VkImageAspectFlags aspect_mask) const;
uint32_t (RangeEncoder::*lower_bound_with_start_function_)(VkImageAspectFlags aspect_mask, uint32_t start) const;
IndexType aspect_base_[kMaxSupportedAspect];
};
class SubresourceGenerator : public Subresource {
public:
SubresourceGenerator() : Subresource(), encoder_(nullptr), limits_(){};
SubresourceGenerator(const RangeEncoder& encoder, const VkImageSubresourceRange& range)
: Subresource(encoder.BeginSubresource(range)), encoder_(&encoder), limits_(range) {}
const VkImageSubresourceRange& Limits() const { return limits_; }
// Seek functions are used by generators to force synchronization, as callers may have altered the position
// to iterater between calls to the generator increment or Seek functions
void SeekAspect(uint32_t seek_index) {
arrayLayer = limits_.baseArrayLayer;
mipLevel = limits_.baseMipLevel;
const auto aspect_index_limit = encoder_->Limits().aspect_index;
if (seek_index < aspect_index_limit) {
aspect_index = seek_index;
// Seeking to bit outside of the limit will set a "empty" subresource
aspectMask = encoder_->AspectBit(aspect_index) & limits_.aspectMask;
} else {
// This is an "end" tombstone
aspect_index = aspect_index_limit;
aspectMask = 0;
}
}
void SeekMip(uint32_t mip_level) {
arrayLayer = limits_.baseArrayLayer;
mipLevel = mip_level;
}
// Next and and ++ functions are for iteration from a base with the bounds, this may be additionally
// controlled/updated by an owning generator (like RangeGenerator using Seek functions)
inline void NextAspect() { SeekAspect(encoder_->LowerBoundFromMask(limits_.aspectMask, aspect_index + 1)); }
void NextMip() {
arrayLayer = limits_.baseArrayLayer;
mipLevel++;
if (mipLevel >= (limits_.baseMipLevel + limits_.levelCount)) {
NextAspect();
}
}
SubresourceGenerator& operator++() {
arrayLayer++;
if (arrayLayer >= (limits_.baseArrayLayer + limits_.layerCount)) {
NextMip();
}
return *this;
}
// General purpose and slow, when we have no other information to update the generator
void Seek(IndexType index) {
// skip forward past discontinuities
*static_cast<Subresource*>(this) = encoder_->Decode(index);
}
const VkImageSubresource& operator*() const { return *this; }
const VkImageSubresource* operator->() const { return this; }
private:
const RangeEncoder* encoder_;
const VkImageSubresourceRange limits_;
};
// Like an iterator for ranges...
class RangeGenerator {
public:
RangeGenerator() : encoder_(nullptr), isr_pos_(), pos_(), aspect_base_() {}
bool operator!=(const RangeGenerator& rhs) { return (pos_ != rhs.pos_) || (&encoder_ != &rhs.encoder_); }
RangeGenerator(const RangeEncoder& encoder);
RangeGenerator(const RangeEncoder& encoder, const VkImageSubresourceRange& subres_range);
inline const IndexRange& operator*() const { return pos_; }
inline const IndexRange* operator->() const { return &pos_; }
// Returns a generator suitable for iterating within a range, is modified by operator ++ to bring
// it in line with sync.
SubresourceGenerator& GetSubresourceGenerator() { return isr_pos_; }
Subresource& GetSubresource() { return isr_pos_; }
RangeGenerator& operator++();
private:
const RangeEncoder* encoder_;
SubresourceGenerator isr_pos_;
IndexRange pos_;
IndexRange aspect_base_;
uint32_t mip_count_ = 0;
uint32_t mip_index_ = 0;
uint32_t aspect_count_ = 0;
uint32_t aspect_index_ = 0;
};
class ImageRangeEncoder : public RangeEncoder {
public:
struct SubresInfo {
VkSubresourceLayout layout;
VkExtent3D extent;
SubresInfo(const VkSubresourceLayout& layout_, const VkExtent3D& extent_, const VkExtent3D& texel_extent,
double texel_size);
SubresInfo(const SubresInfo&) = default;
SubresInfo() = default;
VkDeviceSize y_step_pitch;
VkDeviceSize z_step_pitch;
VkDeviceSize layer_span;
};
// The default constructor for default iterators
ImageRangeEncoder() : image_(nullptr) {}
ImageRangeEncoder(const IMAGE_STATE& image, const AspectParameters* param);
ImageRangeEncoder(const IMAGE_STATE& image);
ImageRangeEncoder(const ImageRangeEncoder& from) = default;
inline IndexType Encode2D(const VkSubresourceLayout& layout, uint32_t layer, uint32_t aspect_index,
const VkOffset3D& offset) const;
inline IndexType Encode3D(const VkSubresourceLayout& layout, uint32_t aspect_index, const VkOffset3D& offset) const;
void Decode(const VkImageSubresource& subres, const IndexType& encode, uint32_t& out_layer, VkOffset3D& out_offset) const;
inline uint32_t GetSubresourceIndex(uint32_t aspect_index, uint32_t mip_level) const {
return mip_level + (aspect_index ? (aspect_index * limits_.mipLevel) : 0U);
}
inline const SubresInfo& GetSubresourceInfo(uint32_t index) const { return subres_info_[index]; }
inline IndexType GetAspectSize(uint32_t aspect_index) const { return aspect_sizes_[aspect_index]; }
inline const double& TexelSize(int aspect_index) const { return texel_sizes_[aspect_index]; }
inline bool IsLinearImage() const { return linear_image_; }
inline IndexType TotalSize() const { return total_size_; }
inline bool Is3D() const { return is_3_d_; }
inline bool IsInterleaveY() const { return y_interleave_; }
inline bool IsCompressed() const { return is_compressed_; }
const VkExtent3D& TexelExtent() const { return texel_extent_; }
using SubresInfoVector = std::vector<SubresInfo>;
private:
const IMAGE_STATE* image_;
std::vector<double> texel_sizes_;
SubresInfoVector subres_info_;
small_vector<IndexType, 4, uint32_t> aspect_sizes_;
IndexType total_size_;
VkExtent3D texel_extent_;
bool is_3_d_;
bool linear_image_;
bool y_interleave_;
bool is_compressed_;
};
class ImageRangeGenerator {
public:
ImageRangeGenerator(const ImageRangeGenerator&) = default;
ImageRangeGenerator() : encoder_(nullptr), subres_range_(), offset_(), extent_(), base_address_(), pos_() {}
bool operator!=(const ImageRangeGenerator& rhs) { return (pos_ != rhs.pos_) || (&encoder_ != &rhs.encoder_); }
ImageRangeGenerator(const ImageRangeEncoder& encoder, const VkImageSubresourceRange& subres_range, const VkOffset3D& offset,
const VkExtent3D& extent, VkDeviceSize base_address);
void SetInitialPosFullOffset(uint32_t layer, uint32_t aspect_index);
void SetInitialPosFullWidth(uint32_t layer, uint32_t aspect_index);
void SetInitialPosFullHeight(uint32_t layer, uint32_t aspect_index);
void SetInitialPosSomeDepth(uint32_t layer, uint32_t aspect_index);
void SetInitialPosFullDepth(uint32_t layer, uint32_t aspect_index);
void SetInitialPosOneLayer(uint32_t layer, uint32_t aspect_index);
void SetInitialPosAllLayers(uint32_t layer, uint32_t aspect_index);
void SetInitialPosOneAspect(uint32_t layer, uint32_t aspect_index);
void SetInitialPosAllSubres(uint32_t layer, uint32_t aspect_index);
void SetInitialPosSomeLayers(uint32_t layer, uint32_t aspect_index);
ImageRangeGenerator(const ImageRangeEncoder& encoder, const VkImageSubresourceRange& subres_range, VkDeviceSize base_address);
inline const IndexRange& operator*() const { return pos_; }
inline const IndexRange* operator->() const { return &pos_; }
ImageRangeGenerator& operator++();
private:
bool Convert2DCompatibleTo3D();
void SetUpSubresInfo();
void SetUpIncrementerDefaults();
void SetUpSubresIncrementer();
void SetUpIncrementer(bool all_width, bool all_height, bool all_depth);
typedef void (ImageRangeGenerator::*SetInitialPosFn)(uint32_t, uint32_t);
inline void SetInitialPos(uint32_t layer, uint32_t aspect_index) { (this->*(set_initial_pos_fn_))(layer, aspect_index); }
const ImageRangeEncoder* encoder_;
VkImageSubresourceRange subres_range_;
VkOffset3D offset_;
VkExtent3D extent_;
VkDeviceSize base_address_;
uint32_t mip_index_;
uint32_t incr_mip_;
bool single_full_size_range_;
uint32_t aspect_index_;
uint32_t subres_index_;
const ImageRangeEncoder::SubresInfo* subres_info_;
SetInitialPosFn set_initial_pos_fn_;
IndexRange pos_;
struct IncrementerState {
// These should be invariant across subresources (mip/aspect)
uint32_t y_step;
uint32_t layer_z_step;
// These vary per mip at least...
uint32_t y_count;
uint32_t layer_z_count;
uint32_t y_index;
uint32_t layer_z_index;
IndexRange y_base;
IndexRange layer_z_base;
IndexType incr_y;
IndexType incr_layer_z;
void Set(uint32_t y_count_, uint32_t layer_z_count_, IndexType base, IndexType span, IndexType y_step, IndexType z_step);
};
IncrementerState incr_state_;
};
// Designed for use with RangeMap of MappedType
template <typename Map>
class ConstMapView {
public:
using KeyType = typename Map::key_type;
using MappedType = typename Map::mapped_type;
using MapValueType = typename Map::mapped_type;
using MapIterator = typename Map::const_iterator;
using CachedLowerBound = typename sparse_container::cached_lower_bound_impl<const Map>;
struct ValueType {
const VkImageSubresource& subresource;
MapIterator it;
ValueType(const VkImageSubresource& subresource_) : subresource(subresource_), it(){};
};
class ConstIterator {
public:
ConstIterator()
: view_(nullptr),
range_gen_(),
cached_it_(),
pos_(range_gen_.GetSubresource()),
current_index_(),
constant_value_bound_() {}
ConstIterator& operator++() {
Increment();
return *this;
}
const ValueType* operator->() const { return &pos_; }
const ValueType& operator*() const { return pos_; }
// Only for comparisons to end()
// Note: if a fully function == is needed, the AtEnd needs to be maintained, as end_iterator is a static.
bool AtEnd() const { return pos_.subresource.aspectMask == 0; }
bool operator==(const ConstIterator& other) const { return AtEnd() && other.AtEnd(); };
bool operator!=(const ConstIterator& other) const { return AtEnd() != other.AtEnd(); };
protected:
friend ConstMapView;
ConstIterator(const ConstMapView& view, const VkImageSubresourceRange& range)
: view_(&view),
range_gen_(view.GetEncoder(), range),
cached_it_(view.GetMap(), range_gen_->begin),
pos_(range_gen_.GetSubresource()),
current_index_(range_gen_->begin),
constant_value_bound_(current_index_) {
UpdateRangeAndValue();
}
void Increment() {
++current_index_;
++(range_gen_.GetSubresourceGenerator());
if (constant_value_bound_ <= current_index_) {
UpdateRangeAndValue();
}
}
void ForceEndCondition() { range_gen_.GetSubresource().aspectMask = 0; }
// Constant value range logice, subreource / lower bound position advance logic
// TODO: convert this piece into a template _impl function suitable for const and non-const view iterators
void UpdateRangeAndValue() {
bool not_found = true;
while (range_gen_->non_empty() && not_found) {
if (!cached_it_.includes(current_index_)) {
// The result of the seek can be invalid, valid, or end...
cached_it_.seek(current_index_);
}
if (cached_it_->lower_bound == view_->GetMap().end()) {
// We're past the end of mapped data. Set end condtion.
ForceEndCondition();
not_found = false;
} else {
// Search within the current range_ for a constant valid constant value interval
// The while condition allows the parallel iterator to advance constant value ranges as needed.
while (range_gen_->includes(current_index_) && not_found) {
if (cached_it_->valid) {
// Our position with in the map is valid so we can update our value
pos_.it = cached_it_->lower_bound;
constant_value_bound_ = std::min(cached_it_->lower_bound->first.end, range_gen_->end);
not_found = false;
} else {
// We're skipping this gap in Map, set the index to the exclusive end and look again
// Note that we ONLY need to Seek the Subresource generator on a skip condition.
current_index_ = std::min(cached_it_->lower_bound->first.begin, range_gen_->end);
constant_value_bound_ = current_index_;
// Move the subresource to the end of the skipped range
range_gen_.GetSubresourceGenerator().Seek(current_index_);
cached_it_.seek(current_index_);
}
}
if (not_found) {
// We need to advance the index range to search as the current cached_it_ lies outside it, and there's
// no easy way to seek RangeGen
// ++range_gen will update Subresource.
++range_gen_;
current_index_ = range_gen_->begin;
}
}
}
if (range_gen_->empty()) {
ForceEndCondition();
}
}
private:
const ConstMapView* view_;
RangeGenerator range_gen_;
CachedLowerBound cached_it_;
ValueType pos_;
IndexType current_index_;
IndexType constant_value_bound_;
};
const Map& GetMap() const { return *map_; }
const RangeEncoder& GetEncoder() const { return *encoder_; }
inline ConstIterator Begin(const VkImageSubresourceRange& range) const { return ConstIterator(*this, range); }
inline const ConstIterator& End() const { return end_; }
// Enable range based for....
inline ConstIterator begin() const { return Begin(encoder_->FullRange()); }
inline const ConstIterator& end() const { return End(); }
ConstMapView() : map_(nullptr), encoder_(nullptr), end_() {}
ConstMapView(const Map& map, const RangeEncoder& encoder) : map_(&map), encoder_(&encoder), end_() {}
private:
const Map* map_;
const RangeEncoder* encoder_;
const ConstIterator end_;
};
// double wrapped map variants.. to avoid needing to templatize on the range map type. The underlying maps are available for
// use in performance sensitive places that are *already* templatized (for example update_range_value).
// In STL style. Note that N must be < uint8_t max
enum BothRangeMapMode { kTristate, kSmall, kBig };
template <typename T, size_t N>
class BothRangeMap {
using BigMap = sparse_container::range_map<IndexType, T>;
using RangeType = sparse_container::range<IndexType>;
using SmallMap = sparse_container::small_range_map<IndexType, T, RangeType, N>;
using SmallMapIterator = typename SmallMap::iterator;
using SmallMapConstIterator = typename SmallMap::const_iterator;
using BigMapIterator = typename BigMap::iterator;
using BigMapConstIterator = typename BigMap::const_iterator;
public:
using value_type = typename SmallMap::value_type;
using key_type = typename SmallMap::key_type;
using index_type = typename SmallMap::index_type;
using mapped_type = typename SmallMap::mapped_type;
using small_map = SmallMap;
using big_map = BigMap;
template <typename Map, typename Value, typename SmallIt, typename BigIt>
class IteratorImpl {
protected:
friend BothRangeMap;
public:
Value* operator->() const {
assert(!Tristate());
if (SmallMode()) {
return small_it_.operator->();
} else {
return big_it_.operator->();
}
}
Value& operator*() const {
assert(!Tristate());
if (SmallMode()) {
return small_it_.operator*();
} else {
return big_it_.operator*();
}
}
IteratorImpl& operator++() {
assert(!Tristate());
if (SmallMode()) {
small_it_.operator++();
} else {
big_it_.operator++();
}
return *this;
}
IteratorImpl& operator--() {
assert(!Tristate());
if (SmallMode()) {
small_it_.operator--();
} else {
big_it_.operator--();
}
return *this;
}
IteratorImpl& operator=(const IteratorImpl& other) {
if (other.Tristate()) {
// Transition to tristate
small_it_ = SmallIt();
big_it_ = BigIt();
} else if (other.SmallMode()) {
small_it_ = other.small_it_;
if (mode_ != other.mode_) {
big_it_ = BigIt();
}
} else {
big_it_ = other.big_it_;
if (mode_ != other.mode_) {
small_it_ = SmallIt();
}
}
mode_ = other.mode_;
return *this;
}
bool operator==(const IteratorImpl& other) const {
if (other.Tristate()) return Tristate(); // both Tristate -> equal, any other comparison !equal
if (Tristate()) return false;
// Since we know neither are tristate....
assert(mode_ == other.mode_);
if (SmallMode()) {
return small_it_ == other.small_it_;
} else {
return big_it_ == other.big_it_;
}
}
bool operator!=(const IteratorImpl& other) const { return !(*this == other); }
IteratorImpl() : small_it_(), big_it_(), mode_(BothRangeMapMode::kTristate) {}
IteratorImpl(const IteratorImpl& other)
: small_it_(other.SmallMode() ? other.small_it_ : SmallIt()),
big_it_(other.BigMode() ? other.big_it_ : BigIt()),
mode_(other.mode_){};
private:
IteratorImpl(BothRangeMapMode mode) : small_it_(), big_it_(), mode_(mode) {}
IteratorImpl(const SmallIt& it) : small_it_(it), big_it_(), mode_(BothRangeMapMode::kSmall) {}
IteratorImpl(const BigIt& it) : small_it_(), big_it_(it), mode_(BothRangeMapMode::kBig) {}
inline bool SmallMode() const { return BothRangeMapMode::kSmall == mode_; }
inline bool BigMode() const { return BothRangeMapMode::kBig == mode_; }
inline bool Tristate() const { return BothRangeMapMode::kTristate == mode_; }
SmallIt small_it_; // only one of these will be initialized non trivially (and they should be small)
BigIt big_it_;
BothRangeMapMode mode_;
};
using iterator = IteratorImpl<BothRangeMap, value_type, SmallMapIterator, BigMapIterator>;
// TODO change const iterator to derived class if iterator -> const_iterator constructor is needed
using const_iterator = IteratorImpl<const BothRangeMap, const value_type, SmallMapConstIterator, BigMapConstIterator>;
inline iterator begin() {
if (SmallMode()) {
return iterator(small_map_->begin());
} else {
return iterator(big_map_->begin());
}
}
inline const_iterator cbegin() const {
if (SmallMode()) {
return const_iterator(small_map_->begin());
} else {
return const_iterator(big_map_->begin());
}
}
inline const_iterator begin() const { return cbegin(); }
inline iterator end() {
if (SmallMode()) {
return iterator(small_map_->end());
} else {
return iterator(big_map_->end());
}
}
inline const_iterator cend() const {
if (SmallMode()) {
return const_iterator(small_map_->end());
} else {
return const_iterator(big_map_->end());
}
}
inline const_iterator end() const { return cend(); }
inline iterator find(const key_type& key) {
assert(!Tristate());
if (SmallMode()) {
return iterator(small_map_->find(key));
} else {
return iterator(big_map_->find(key));
}
}
inline const_iterator find(const key_type& key) const {
assert(!Tristate());
if (SmallMode()) {
return const_iterator(small_map_->find(key));
} else {
return const_iterator(big_map_->find(key));
}
}
inline iterator find(const index_type& index) {
assert(!Tristate());
if (SmallMode()) {
return iterator(small_map_->find(index));
} else {
return iterator(big_map_->find(index));
}
}
inline const_iterator find(const index_type& index) const {
assert(!Tristate());
if (SmallMode()) {
return const_iterator(static_cast<const SmallMap*>(small_map_)->find(index));
} else {
return const_iterator(static_cast<const BigMap*>(big_map_)->find(index));
}
}
// TODO -- this is supposed to be a const_iterator, which is constructable from an iterator
inline void insert(const iterator& hint, const value_type& value) {
assert(!Tristate());
if (SmallMode()) {
assert(hint.SmallMode());
small_map_->insert(hint.small_it_, value);
} else {
assert(hint.BigMode());
big_map_->insert(hint.big_it_, value);
}
}
template <typename SplitOp>
iterator split(const iterator whole_it, const index_type& index, const SplitOp& split_op) {
assert(!Tristate());
if (SmallMode()) {
return small_map_->split(whole_it.small_it_, index, split_op);
} else {
return big_map_->split(whole_it.big_it_, index, split_op);
}
}
inline iterator lower_bound(const key_type& key) {
if (SmallMode()) {
return iterator(small_map_->lower_bound(key));
} else {
return iterator(big_map_->lower_bound(key));
}
}
inline const_iterator lower_bound(const key_type& key) const {
if (SmallMode()) {
return const_iterator(small_map_->lower_bound(key));
} else {
return const_iterator(big_map_->lower_bound(key));
}
}
template <typename Value>
inline iterator overwrite_range(const iterator& lower, Value&& value) {
if (SmallMode()) {
assert(lower.SmallMode());
return small_map_->overwrite_range(lower.small_it_, std::forward<Value>(value));
} else {
assert(lower.BigMode());
return big_map_->overwrite_range(lower.big_it_, std::forward<Value>(value));
}
}
// With power comes responsibility. You can get to the underlying maps, s.t. in inner loops, the "SmallMode" checks can be
// avoided per call, just be sure and Get the correct one.
BothRangeMapMode GetMode() const { return mode_; }
const small_map& GetSmallMap() const {
assert(SmallMode());
return *small_map_;
}
small_map& GetSmallMap() {
assert(SmallMode());
return *small_map_;
}
const big_map& GetBigMap() const {
assert(BigMode());
return *big_map_;
}
big_map& GetBigMap() {
assert(BigMode());
return *big_map_;
}
BothRangeMap() = delete;
BothRangeMap(index_type limit) : mode_(ComputeMode(limit)), big_map_(MakeBigMap()), small_map_(MakeSmallMap(limit)) {}
inline bool empty() const {
if (SmallMode()) {
return small_map_->empty();
} else {
assert(BigMode());
return big_map_->empty();
}
}
inline size_t size() const {
if (SmallMode()) {
return small_map_->size();
} else {
assert(BigMode());
return big_map_->size();
}
}
inline bool SmallMode() const { return BothRangeMapMode::kSmall == mode_; }
inline bool BigMode() const { return BothRangeMapMode::kBig == mode_; }
inline bool Tristate() const { return BothRangeMapMode::kTristate == mode_; }
private:
static BothRangeMapMode ComputeMode(index_type size_limit) {
return size_limit <= N ? BothRangeMapMode::kSmall : BothRangeMapMode::kBig;
}
BigMap* MakeBigMap() {
if (BigMode()) {
return new (&backing_store) BigMap();
}
return nullptr;
}
SmallMap* MakeSmallMap(index_type limit) {
if (SmallMode()) {
return new (&backing_store) SmallMap(limit);
}
return nullptr;
}
BothRangeMapMode mode_ = BothRangeMapMode::kTristate;
// Must be after mode_ as they use mode for initialization logic
BigMap* big_map_ = nullptr;
SmallMap* small_map_ = nullptr;
using Storage = typename std::aligned_union<0, SmallMap, BigMap>::type;
Storage backing_store;
};
} // namespace subresource_adapter
#endif