forked from KhronosGroup/Vulkan-ValidationLayers
-
Notifications
You must be signed in to change notification settings - Fork 1
/
gpu_utils.cpp
606 lines (573 loc) · 31.3 KB
/
gpu_utils.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
/* Copyright (c) 2020-2021 The Khronos Group Inc.
* Copyright (c) 2020-2021 Valve Corporation
* Copyright (c) 2020-2021 LunarG, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Author: Tony Barbour <[email protected]>
*/
#include "chassis.h"
#include "layer_chassis_dispatch.h"
#include "state_tracker.h"
#include "descriptor_sets.h"
#include "shader_validation.h"
#include "spirv-tools/libspirv.h"
#include "spirv-tools/optimizer.hpp"
#include "spirv-tools/instrument.hpp"
#include <spirv/unified1/spirv.hpp>
#include <algorithm>
#include <regex>
#define VMA_IMPLEMENTATION
// This define indicates that we will supply Vulkan function pointers at initialization
#define VMA_STATIC_VULKAN_FUNCTIONS 0
#include "vk_mem_alloc.h"
class UtilDescriptorSetManager {
public:
UtilDescriptorSetManager(VkDevice device, uint32_t numBindingsInSet);
~UtilDescriptorSetManager();
VkResult GetDescriptorSet(VkDescriptorPool *desc_pool, VkDescriptorSetLayout ds_layout, VkDescriptorSet *desc_sets);
VkResult GetDescriptorSets(uint32_t count, VkDescriptorPool *pool, VkDescriptorSetLayout ds_layout,
std::vector<VkDescriptorSet> *desc_sets);
void PutBackDescriptorSet(VkDescriptorPool desc_pool, VkDescriptorSet desc_set);
private:
static const uint32_t kItemsPerChunk = 512;
struct PoolTracker {
uint32_t size;
uint32_t used;
};
VkDevice device;
uint32_t numBindingsInSet;
layer_data::unordered_map<VkDescriptorPool, struct PoolTracker> desc_pool_map_;
};
// Implementation for Descriptor Set Manager class
UtilDescriptorSetManager::UtilDescriptorSetManager(VkDevice device, uint32_t numBindingsInSet)
: device(device), numBindingsInSet(numBindingsInSet) {}
UtilDescriptorSetManager::~UtilDescriptorSetManager() {
for (auto &pool : desc_pool_map_) {
DispatchDestroyDescriptorPool(device, pool.first, NULL);
}
desc_pool_map_.clear();
}
VkResult UtilDescriptorSetManager::GetDescriptorSet(VkDescriptorPool *desc_pool, VkDescriptorSetLayout ds_layout,
VkDescriptorSet *desc_set) {
std::vector<VkDescriptorSet> desc_sets;
VkResult result = GetDescriptorSets(1, desc_pool, ds_layout, &desc_sets);
if (result == VK_SUCCESS) {
*desc_set = desc_sets[0];
}
return result;
}
VkResult UtilDescriptorSetManager::GetDescriptorSets(uint32_t count, VkDescriptorPool *pool, VkDescriptorSetLayout ds_layout,
std::vector<VkDescriptorSet> *desc_sets) {
const uint32_t default_pool_size = kItemsPerChunk;
VkResult result = VK_SUCCESS;
VkDescriptorPool pool_to_use = VK_NULL_HANDLE;
if (0 == count) {
return result;
}
desc_sets->clear();
desc_sets->resize(count);
for (auto &pool : desc_pool_map_) {
if (pool.second.used + count < pool.second.size) {
pool_to_use = pool.first;
break;
}
}
if (VK_NULL_HANDLE == pool_to_use) {
uint32_t pool_count = default_pool_size;
if (count > default_pool_size) {
pool_count = count;
}
const VkDescriptorPoolSize size_counts = {
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
pool_count * numBindingsInSet,
};
auto desc_pool_info = LvlInitStruct<VkDescriptorPoolCreateInfo>();
desc_pool_info.flags = VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT;
desc_pool_info.maxSets = pool_count;
desc_pool_info.poolSizeCount = 1;
desc_pool_info.pPoolSizes = &size_counts;
result = DispatchCreateDescriptorPool(device, &desc_pool_info, NULL, &pool_to_use);
assert(result == VK_SUCCESS);
if (result != VK_SUCCESS) {
return result;
}
desc_pool_map_[pool_to_use].size = desc_pool_info.maxSets;
desc_pool_map_[pool_to_use].used = 0;
}
std::vector<VkDescriptorSetLayout> desc_layouts(count, ds_layout);
VkDescriptorSetAllocateInfo alloc_info = {VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO, NULL, pool_to_use, count,
desc_layouts.data()};
result = DispatchAllocateDescriptorSets(device, &alloc_info, desc_sets->data());
assert(result == VK_SUCCESS);
if (result != VK_SUCCESS) {
return result;
}
*pool = pool_to_use;
desc_pool_map_[pool_to_use].used += count;
return result;
}
void UtilDescriptorSetManager::PutBackDescriptorSet(VkDescriptorPool desc_pool, VkDescriptorSet desc_set) {
auto iter = desc_pool_map_.find(desc_pool);
if (iter != desc_pool_map_.end()) {
VkResult result = DispatchFreeDescriptorSets(device, desc_pool, 1, &desc_set);
assert(result == VK_SUCCESS);
if (result != VK_SUCCESS) {
return;
}
desc_pool_map_[desc_pool].used--;
if (0 == desc_pool_map_[desc_pool].used) {
DispatchDestroyDescriptorPool(device, desc_pool, NULL);
desc_pool_map_.erase(desc_pool);
}
}
return;
}
// Trampolines to make VMA call Dispatch for Vulkan calls
static VKAPI_ATTR void VKAPI_CALL gpuVkGetPhysicalDeviceProperties(VkPhysicalDevice physicalDevice,
VkPhysicalDeviceProperties *pProperties) {
DispatchGetPhysicalDeviceProperties(physicalDevice, pProperties);
}
static VKAPI_ATTR void VKAPI_CALL gpuVkGetPhysicalDeviceMemoryProperties(VkPhysicalDevice physicalDevice,
VkPhysicalDeviceMemoryProperties *pMemoryProperties) {
DispatchGetPhysicalDeviceMemoryProperties(physicalDevice, pMemoryProperties);
}
static VKAPI_ATTR VkResult VKAPI_CALL gpuVkAllocateMemory(VkDevice device, const VkMemoryAllocateInfo *pAllocateInfo,
const VkAllocationCallbacks *pAllocator, VkDeviceMemory *pMemory) {
return DispatchAllocateMemory(device, pAllocateInfo, pAllocator, pMemory);
}
static VKAPI_ATTR void VKAPI_CALL gpuVkFreeMemory(VkDevice device, VkDeviceMemory memory, const VkAllocationCallbacks *pAllocator) {
DispatchFreeMemory(device, memory, pAllocator);
}
static VKAPI_ATTR VkResult VKAPI_CALL gpuVkMapMemory(VkDevice device, VkDeviceMemory memory, VkDeviceSize offset, VkDeviceSize size,
VkMemoryMapFlags flags, void **ppData) {
return DispatchMapMemory(device, memory, offset, size, flags, ppData);
}
static VKAPI_ATTR void VKAPI_CALL gpuVkUnmapMemory(VkDevice device, VkDeviceMemory memory) { DispatchUnmapMemory(device, memory); }
static VKAPI_ATTR VkResult VKAPI_CALL gpuVkFlushMappedMemoryRanges(VkDevice device, uint32_t memoryRangeCount,
const VkMappedMemoryRange *pMemoryRanges) {
return DispatchFlushMappedMemoryRanges(device, memoryRangeCount, pMemoryRanges);
}
static VKAPI_ATTR VkResult VKAPI_CALL gpuVkInvalidateMappedMemoryRanges(VkDevice device, uint32_t memoryRangeCount,
const VkMappedMemoryRange *pMemoryRanges) {
return DispatchInvalidateMappedMemoryRanges(device, memoryRangeCount, pMemoryRanges);
}
static VKAPI_ATTR VkResult VKAPI_CALL gpuVkBindBufferMemory(VkDevice device, VkBuffer buffer, VkDeviceMemory memory,
VkDeviceSize memoryOffset) {
return DispatchBindBufferMemory(device, buffer, memory, memoryOffset);
}
static VKAPI_ATTR VkResult VKAPI_CALL gpuVkBindImageMemory(VkDevice device, VkImage image, VkDeviceMemory memory,
VkDeviceSize memoryOffset) {
return DispatchBindImageMemory(device, image, memory, memoryOffset);
}
static VKAPI_ATTR void VKAPI_CALL gpuVkGetBufferMemoryRequirements(VkDevice device, VkBuffer buffer,
VkMemoryRequirements *pMemoryRequirements) {
DispatchGetBufferMemoryRequirements(device, buffer, pMemoryRequirements);
}
static VKAPI_ATTR void VKAPI_CALL gpuVkGetImageMemoryRequirements(VkDevice device, VkImage image,
VkMemoryRequirements *pMemoryRequirements) {
DispatchGetImageMemoryRequirements(device, image, pMemoryRequirements);
}
static VKAPI_ATTR VkResult VKAPI_CALL gpuVkCreateBuffer(VkDevice device, const VkBufferCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator, VkBuffer *pBuffer) {
return DispatchCreateBuffer(device, pCreateInfo, pAllocator, pBuffer);
}
static VKAPI_ATTR void VKAPI_CALL gpuVkDestroyBuffer(VkDevice device, VkBuffer buffer, const VkAllocationCallbacks *pAllocator) {
return DispatchDestroyBuffer(device, buffer, pAllocator);
}
static VKAPI_ATTR VkResult VKAPI_CALL gpuVkCreateImage(VkDevice device, const VkImageCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator, VkImage *pImage) {
return DispatchCreateImage(device, pCreateInfo, pAllocator, pImage);
}
static VKAPI_ATTR void VKAPI_CALL gpuVkDestroyImage(VkDevice device, VkImage image, const VkAllocationCallbacks *pAllocator) {
DispatchDestroyImage(device, image, pAllocator);
}
static VKAPI_ATTR void VKAPI_CALL gpuVkCmdCopyBuffer(VkCommandBuffer commandBuffer, VkBuffer srcBuffer, VkBuffer dstBuffer,
uint32_t regionCount, const VkBufferCopy *pRegions) {
DispatchCmdCopyBuffer(commandBuffer, srcBuffer, dstBuffer, regionCount, pRegions);
}
VkResult UtilInitializeVma(VkPhysicalDevice physical_device, VkDevice device, VmaAllocator *pAllocator) {
VmaVulkanFunctions functions;
VmaAllocatorCreateInfo allocator_info = {};
allocator_info.device = device;
allocator_info.physicalDevice = physical_device;
functions.vkGetPhysicalDeviceProperties = static_cast<PFN_vkGetPhysicalDeviceProperties>(gpuVkGetPhysicalDeviceProperties);
functions.vkGetPhysicalDeviceMemoryProperties =
static_cast<PFN_vkGetPhysicalDeviceMemoryProperties>(gpuVkGetPhysicalDeviceMemoryProperties);
functions.vkAllocateMemory = static_cast<PFN_vkAllocateMemory>(gpuVkAllocateMemory);
functions.vkFreeMemory = static_cast<PFN_vkFreeMemory>(gpuVkFreeMemory);
functions.vkMapMemory = static_cast<PFN_vkMapMemory>(gpuVkMapMemory);
functions.vkUnmapMemory = static_cast<PFN_vkUnmapMemory>(gpuVkUnmapMemory);
functions.vkFlushMappedMemoryRanges = static_cast<PFN_vkFlushMappedMemoryRanges>(gpuVkFlushMappedMemoryRanges);
functions.vkInvalidateMappedMemoryRanges = static_cast<PFN_vkInvalidateMappedMemoryRanges>(gpuVkInvalidateMappedMemoryRanges);
functions.vkBindBufferMemory = static_cast<PFN_vkBindBufferMemory>(gpuVkBindBufferMemory);
functions.vkBindImageMemory = static_cast<PFN_vkBindImageMemory>(gpuVkBindImageMemory);
functions.vkGetBufferMemoryRequirements = static_cast<PFN_vkGetBufferMemoryRequirements>(gpuVkGetBufferMemoryRequirements);
functions.vkGetImageMemoryRequirements = static_cast<PFN_vkGetImageMemoryRequirements>(gpuVkGetImageMemoryRequirements);
functions.vkCreateBuffer = static_cast<PFN_vkCreateBuffer>(gpuVkCreateBuffer);
functions.vkDestroyBuffer = static_cast<PFN_vkDestroyBuffer>(gpuVkDestroyBuffer);
functions.vkCreateImage = static_cast<PFN_vkCreateImage>(gpuVkCreateImage);
functions.vkDestroyImage = static_cast<PFN_vkDestroyImage>(gpuVkDestroyImage);
functions.vkCmdCopyBuffer = static_cast<PFN_vkCmdCopyBuffer>(gpuVkCmdCopyBuffer);
allocator_info.pVulkanFunctions = &functions;
return vmaCreateAllocator(&allocator_info, pAllocator);
}
void UtilPreCallRecordCreateDevice(VkPhysicalDevice gpu, safe_VkDeviceCreateInfo *modified_create_info,
VkPhysicalDeviceFeatures supported_features, VkPhysicalDeviceFeatures desired_features) {
VkPhysicalDeviceFeatures *features = nullptr;
if (modified_create_info->pEnabledFeatures) {
// If pEnabledFeatures, VkPhysicalDeviceFeatures2 in pNext chain is not allowed
features = const_cast<VkPhysicalDeviceFeatures *>(modified_create_info->pEnabledFeatures);
} else {
VkPhysicalDeviceFeatures2 *features2 = nullptr;
features2 = const_cast<VkPhysicalDeviceFeatures2 *>(LvlFindInChain<VkPhysicalDeviceFeatures2>(modified_create_info->pNext));
if (features2) features = &features2->features;
}
VkPhysicalDeviceFeatures new_features = {};
VkBool32 *desired = reinterpret_cast<VkBool32 *>(&desired_features);
VkBool32 *feature_ptr;
if (features) {
feature_ptr = reinterpret_cast<VkBool32 *>(features);
} else {
feature_ptr = reinterpret_cast<VkBool32 *>(&new_features);
}
VkBool32 *supported = reinterpret_cast<VkBool32 *>(&supported_features);
for (size_t i = 0; i < sizeof(VkPhysicalDeviceFeatures); i += (sizeof(VkBool32))) {
if (*supported && *desired) {
*feature_ptr = true;
}
supported++;
desired++;
feature_ptr++;
}
if (!features) {
delete modified_create_info->pEnabledFeatures;
modified_create_info->pEnabledFeatures = new VkPhysicalDeviceFeatures(new_features);
}
}
// Generate the stage-specific part of the message.
void UtilGenerateStageMessage(const uint32_t *debug_record, std::string &msg) {
using namespace spvtools;
std::ostringstream strm;
switch (debug_record[kInstCommonOutStageIdx]) {
case spv::ExecutionModelVertex: {
strm << "Stage = Vertex. Vertex Index = " << debug_record[kInstVertOutVertexIndex]
<< " Instance Index = " << debug_record[kInstVertOutInstanceIndex] << ". ";
} break;
case spv::ExecutionModelTessellationControl: {
strm << "Stage = Tessellation Control. Invocation ID = " << debug_record[kInstTessCtlOutInvocationId]
<< ", Primitive ID = " << debug_record[kInstTessCtlOutPrimitiveId];
} break;
case spv::ExecutionModelTessellationEvaluation: {
strm << "Stage = Tessellation Eval. Primitive ID = " << debug_record[kInstTessEvalOutPrimitiveId]
<< ", TessCoord (u, v) = (" << debug_record[kInstTessEvalOutTessCoordU] << ", "
<< debug_record[kInstTessEvalOutTessCoordV] << "). ";
} break;
case spv::ExecutionModelGeometry: {
strm << "Stage = Geometry. Primitive ID = " << debug_record[kInstGeomOutPrimitiveId]
<< " Invocation ID = " << debug_record[kInstGeomOutInvocationId] << ". ";
} break;
case spv::ExecutionModelFragment: {
strm << "Stage = Fragment. Fragment coord (x,y) = ("
<< *reinterpret_cast<const float *>(&debug_record[kInstFragOutFragCoordX]) << ", "
<< *reinterpret_cast<const float *>(&debug_record[kInstFragOutFragCoordY]) << "). ";
} break;
case spv::ExecutionModelGLCompute: {
strm << "Stage = Compute. Global invocation ID (x, y, z) = (" << debug_record[kInstCompOutGlobalInvocationIdX] << ", "
<< debug_record[kInstCompOutGlobalInvocationIdY] << ", " << debug_record[kInstCompOutGlobalInvocationIdZ] << " )";
} break;
case spv::ExecutionModelRayGenerationNV: {
strm << "Stage = Ray Generation. Global Launch ID (x,y,z) = (" << debug_record[kInstRayTracingOutLaunchIdX] << ", "
<< debug_record[kInstRayTracingOutLaunchIdY] << ", " << debug_record[kInstRayTracingOutLaunchIdZ] << "). ";
} break;
case spv::ExecutionModelIntersectionNV: {
strm << "Stage = Intersection. Global Launch ID (x,y,z) = (" << debug_record[kInstRayTracingOutLaunchIdX] << ", "
<< debug_record[kInstRayTracingOutLaunchIdY] << ", " << debug_record[kInstRayTracingOutLaunchIdZ] << "). ";
} break;
case spv::ExecutionModelAnyHitNV: {
strm << "Stage = Any Hit. Global Launch ID (x,y,z) = (" << debug_record[kInstRayTracingOutLaunchIdX] << ", "
<< debug_record[kInstRayTracingOutLaunchIdY] << ", " << debug_record[kInstRayTracingOutLaunchIdZ] << "). ";
} break;
case spv::ExecutionModelClosestHitNV: {
strm << "Stage = Closest Hit. Global Launch ID (x,y,z) = (" << debug_record[kInstRayTracingOutLaunchIdX] << ", "
<< debug_record[kInstRayTracingOutLaunchIdY] << ", " << debug_record[kInstRayTracingOutLaunchIdZ] << "). ";
} break;
case spv::ExecutionModelMissNV: {
strm << "Stage = Miss. Global Launch ID (x,y,z) = (" << debug_record[kInstRayTracingOutLaunchIdX] << ", "
<< debug_record[kInstRayTracingOutLaunchIdY] << ", " << debug_record[kInstRayTracingOutLaunchIdZ] << "). ";
} break;
case spv::ExecutionModelCallableNV: {
strm << "Stage = Callable. Global Launch ID (x,y,z) = (" << debug_record[kInstRayTracingOutLaunchIdX] << ", "
<< debug_record[kInstRayTracingOutLaunchIdY] << ", " << debug_record[kInstRayTracingOutLaunchIdZ] << "). ";
} break;
case spv::ExecutionModelTaskNV: {
strm << "Stage = Task. Global invocation ID (x, y, z) = (" << debug_record[kInstTaskOutGlobalInvocationIdX] << ", "
<< debug_record[kInstTaskOutGlobalInvocationIdY] << ", " << debug_record[kInstTaskOutGlobalInvocationIdZ] << " )";
} break;
case spv::ExecutionModelMeshNV: {
strm << "Stage = Mesh.Global invocation ID (x, y, z) = (" << debug_record[kInstMeshOutGlobalInvocationIdX] << ", "
<< debug_record[kInstMeshOutGlobalInvocationIdY] << ", " << debug_record[kInstMeshOutGlobalInvocationIdZ] << " )";
} break;
default: {
strm << "Internal Error (unexpected stage = " << debug_record[kInstCommonOutStageIdx] << "). ";
assert(false);
} break;
}
msg = strm.str();
}
std::string LookupDebugUtilsName(const debug_report_data *report_data, const uint64_t object) {
auto object_label = report_data->DebugReportGetUtilsObjectName(object);
if (object_label != "") {
object_label = "(" + object_label + ")";
}
return object_label;
}
// Generate message from the common portion of the debug report record.
void UtilGenerateCommonMessage(const debug_report_data *report_data, const VkCommandBuffer commandBuffer,
const uint32_t *debug_record, const VkShaderModule shader_module_handle,
const VkPipeline pipeline_handle, const VkPipelineBindPoint pipeline_bind_point,
const uint32_t operation_index, std::string &msg) {
using namespace spvtools;
std::ostringstream strm;
if (shader_module_handle == VK_NULL_HANDLE) {
strm << std::hex << std::showbase << "Internal Error: Unable to locate information for shader used in command buffer "
<< LookupDebugUtilsName(report_data, HandleToUint64(commandBuffer)) << "(" << HandleToUint64(commandBuffer) << "). ";
assert(true);
} else {
strm << std::hex << std::showbase << "Command buffer " << LookupDebugUtilsName(report_data, HandleToUint64(commandBuffer))
<< "(" << HandleToUint64(commandBuffer) << "). ";
if (pipeline_bind_point == VK_PIPELINE_BIND_POINT_GRAPHICS) {
strm << "Draw ";
} else if (pipeline_bind_point == VK_PIPELINE_BIND_POINT_COMPUTE) {
strm << "Compute ";
} else if (pipeline_bind_point == VK_PIPELINE_BIND_POINT_RAY_TRACING_NV) {
strm << "Ray Trace ";
} else {
assert(false);
strm << "Unknown Pipeline Operation ";
}
strm << "Index " << operation_index << ". "
<< "Pipeline " << LookupDebugUtilsName(report_data, HandleToUint64(pipeline_handle)) << "("
<< HandleToUint64(pipeline_handle) << "). "
<< "Shader Module " << LookupDebugUtilsName(report_data, HandleToUint64(shader_module_handle)) << "("
<< HandleToUint64(shader_module_handle) << "). ";
}
strm << std::dec << std::noshowbase;
strm << "Shader Instruction Index = " << debug_record[kInstCommonOutInstructionIdx] << ". ";
msg = strm.str();
}
// Read the contents of the SPIR-V OpSource instruction and any following continuation instructions.
// Split the single string into a vector of strings, one for each line, for easier processing.
void ReadOpSource(const SHADER_MODULE_STATE &shader, const uint32_t reported_file_id, std::vector<std::string> &opsource_lines) {
for (auto insn : shader) {
if ((insn.opcode() == spv::OpSource) && (insn.len() >= 5) && (insn.word(3) == reported_file_id)) {
std::istringstream in_stream;
std::string cur_line;
in_stream.str((char *)&insn.word(4));
while (std::getline(in_stream, cur_line)) {
opsource_lines.push_back(cur_line);
}
while ((++insn).opcode() == spv::OpSourceContinued) {
in_stream.str((char *)&insn.word(1));
while (std::getline(in_stream, cur_line)) {
opsource_lines.push_back(cur_line);
}
}
break;
}
}
}
// The task here is to search the OpSource content to find the #line directive with the
// line number that is closest to, but still prior to the reported error line number and
// still within the reported filename.
// From this known position in the OpSource content we can add the difference between
// the #line line number and the reported error line number to determine the location
// in the OpSource content of the reported error line.
//
// Considerations:
// - Look only at #line directives that specify the reported_filename since
// the reported error line number refers to its location in the reported filename.
// - If a #line directive does not have a filename, the file is the reported filename, or
// the filename found in a prior #line directive. (This is C-preprocessor behavior)
// - It is possible (e.g., inlining) for blocks of code to get shuffled out of their
// original order and the #line directives are used to keep the numbering correct. This
// is why we need to examine the entire contents of the source, instead of leaving early
// when finding a #line line number larger than the reported error line number.
//
// GCC 4.8 has a problem with std::regex that is fixed in GCC 4.9. Provide fallback code for 4.8
#define GCC_VERSION (__GNUC__ * 10000 + __GNUC_MINOR__ * 100 + __GNUC_PATCHLEVEL__)
#if defined(__GNUC__) && GCC_VERSION < 40900
bool GetLineAndFilename(const std::string string, uint32_t *linenumber, std::string &filename) {
// # line <linenumber> "<filename>" or
// #line <linenumber> "<filename>"
std::vector<std::string> tokens;
std::stringstream stream(string);
std::string temp;
uint32_t line_index = 0;
while (stream >> temp) tokens.push_back(temp);
auto size = tokens.size();
if (size > 1) {
if (tokens[0] == "#" && tokens[1] == "line") {
line_index = 2;
} else if (tokens[0] == "#line") {
line_index = 1;
}
}
if (0 == line_index) return false;
*linenumber = static_cast<uint32_t>(std::stoul(tokens[line_index]));
uint32_t filename_index = line_index + 1;
// Remove enclosing double quotes around filename
if (size > filename_index) filename = tokens[filename_index].substr(1, tokens[filename_index].size() - 2);
return true;
}
#else
bool GetLineAndFilename(const std::string string, uint32_t *linenumber, std::string &filename) {
static const std::regex line_regex( // matches #line directives
"^" // beginning of line
"\\s*" // optional whitespace
"#" // required text
"\\s*" // optional whitespace
"line" // required text
"\\s+" // required whitespace
"([0-9]+)" // required first capture - line number
"(\\s+)?" // optional second capture - whitespace
"(\".+\")?" // optional third capture - quoted filename with at least one char inside
".*"); // rest of line (needed when using std::regex_match since the entire line is tested)
std::smatch captures;
bool found_line = std::regex_match(string, captures, line_regex);
if (!found_line) return false;
// filename is optional and considered found only if the whitespace and the filename are captured
if (captures[2].matched && captures[3].matched) {
// Remove enclosing double quotes. The regex guarantees the quotes and at least one char.
filename = captures[3].str().substr(1, captures[3].str().size() - 2);
}
*linenumber = (uint32_t)std::stoul(captures[1]);
return true;
}
#endif // GCC_VERSION
// Extract the filename, line number, and column number from the correct OpLine and build a message string from it.
// Scan the source (from OpSource) to find the line of source at the reported line number and place it in another message string.
void UtilGenerateSourceMessages(const std::vector<unsigned int> &pgm, const uint32_t *debug_record, bool from_printf,
std::string &filename_msg, std::string &source_msg) {
using namespace spvtools;
std::ostringstream filename_stream;
std::ostringstream source_stream;
SHADER_MODULE_STATE shader;
shader.words = pgm;
// Find the OpLine just before the failing instruction indicated by the debug info.
// SPIR-V can only be iterated in the forward direction due to its opcode/length encoding.
uint32_t instruction_index = 0;
uint32_t reported_file_id = 0;
uint32_t reported_line_number = 0;
uint32_t reported_column_number = 0;
if (shader.words.size() > 0) {
for (const auto &insn : shader) {
if (insn.opcode() == spv::OpLine) {
reported_file_id = insn.word(1);
reported_line_number = insn.word(2);
reported_column_number = insn.word(3);
}
if (instruction_index == debug_record[kInstCommonOutInstructionIdx]) {
break;
}
instruction_index++;
}
}
// Create message with file information obtained from the OpString pointed to by the discovered OpLine.
std::string reported_filename;
if (reported_file_id == 0) {
filename_stream
<< "Unable to find SPIR-V OpLine for source information. Build shader with debug info to get source information.";
} else {
bool found_opstring = false;
std::string prefix;
if (from_printf) {
prefix = "Debug shader printf message generated ";
} else {
prefix = "Shader validation error occurred ";
}
for (const auto &insn : shader) {
if ((insn.opcode() == spv::OpString) && (insn.len() >= 3) && (insn.word(1) == reported_file_id)) {
found_opstring = true;
reported_filename = (char *)&insn.word(2);
if (reported_filename.empty()) {
filename_stream << prefix << "at line " << reported_line_number;
} else {
filename_stream << prefix << "in file " << reported_filename << " at line " << reported_line_number;
}
if (reported_column_number > 0) {
filename_stream << ", column " << reported_column_number;
}
filename_stream << ".";
break;
}
}
if (!found_opstring) {
filename_stream << "Unable to find SPIR-V OpString for file id " << reported_file_id << " from OpLine instruction."
<< std::endl;
filename_stream << "File ID = " << reported_file_id << ", Line Number = " << reported_line_number
<< ", Column = " << reported_column_number << std::endl;
}
}
filename_msg = filename_stream.str();
// Create message to display source code line containing error.
if ((reported_file_id != 0)) {
// Read the source code and split it up into separate lines.
std::vector<std::string> opsource_lines;
ReadOpSource(shader, reported_file_id, opsource_lines);
// Find the line in the OpSource content that corresponds to the reported error file and line.
if (!opsource_lines.empty()) {
uint32_t saved_line_number = 0;
std::string current_filename = reported_filename; // current "preprocessor" filename state.
std::vector<std::string>::size_type saved_opsource_offset = 0;
bool found_best_line = false;
for (auto it = opsource_lines.begin(); it != opsource_lines.end(); ++it) {
uint32_t parsed_line_number;
std::string parsed_filename;
bool found_line = GetLineAndFilename(*it, &parsed_line_number, parsed_filename);
if (!found_line) continue;
bool found_filename = parsed_filename.size() > 0;
if (found_filename) {
current_filename = parsed_filename;
}
if ((!found_filename) || (current_filename == reported_filename)) {
// Update the candidate best line directive, if the current one is prior and closer to the reported line
if (reported_line_number >= parsed_line_number) {
if (!found_best_line ||
(reported_line_number - parsed_line_number <= reported_line_number - saved_line_number)) {
saved_line_number = parsed_line_number;
saved_opsource_offset = std::distance(opsource_lines.begin(), it);
found_best_line = true;
}
}
}
}
if (found_best_line) {
assert(reported_line_number >= saved_line_number);
std::vector<std::string>::size_type opsource_index =
(reported_line_number - saved_line_number) + 1 + saved_opsource_offset;
if (opsource_index < opsource_lines.size()) {
source_stream << "\n" << reported_line_number << ": " << opsource_lines[opsource_index].c_str();
} else {
source_stream << "Internal error: calculated source line of " << opsource_index << " for source size of "
<< opsource_lines.size() << " lines.";
}
} else {
source_stream << "Unable to find suitable #line directive in SPIR-V OpSource.";
}
} else {
source_stream << "Unable to find SPIR-V OpSource.";
}
}
source_msg = source_stream.str();
}