forked from KhronosGroup/Vulkan-ValidationLayers
-
Notifications
You must be signed in to change notification settings - Fork 1
/
debug_printf.cpp
957 lines (854 loc) · 51.7 KB
/
debug_printf.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
/* Copyright (c) 2020-2021 The Khronos Group Inc.
* Copyright (c) 2020-2021 Valve Corporation
* Copyright (c) 2020-2021 LunarG, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Author: Tony Barbour <[email protected]>
*/
#include "debug_printf.h"
#include "spirv-tools/optimizer.hpp"
#include "spirv-tools/instrument.hpp"
#include <iostream>
#include "layer_chassis_dispatch.h"
#include "sync_utils.h"
#include "cmd_buffer_state.h"
static const VkShaderStageFlags kShaderStageAllRayTracing =
VK_SHADER_STAGE_ANY_HIT_BIT_NV | VK_SHADER_STAGE_CALLABLE_BIT_NV | VK_SHADER_STAGE_CLOSEST_HIT_BIT_NV |
VK_SHADER_STAGE_INTERSECTION_BIT_NV | VK_SHADER_STAGE_MISS_BIT_NV | VK_SHADER_STAGE_RAYGEN_BIT_NV;
// Convenience function for reporting problems with setting up Debug Printf.
template <typename T>
void DebugPrintf::ReportSetupProblem(T object, const char *const specific_message) const {
LogError(object, "UNASSIGNED-DEBUG-PRINTF ", "Detail: (%s)", specific_message);
}
// Turn on necessary device features.
void DebugPrintf::PreCallRecordCreateDevice(VkPhysicalDevice gpu, const VkDeviceCreateInfo *create_info,
const VkAllocationCallbacks *pAllocator, VkDevice *pDevice,
void *modified_create_info) {
DispatchGetPhysicalDeviceFeatures(gpu, &supported_features);
VkPhysicalDeviceFeatures features = {};
features.vertexPipelineStoresAndAtomics = true;
features.fragmentStoresAndAtomics = true;
UtilPreCallRecordCreateDevice(gpu, reinterpret_cast<safe_VkDeviceCreateInfo *>(modified_create_info), supported_features,
features);
}
// Perform initializations that can be done at Create Device time.
void DebugPrintf::PostCallRecordCreateDevice(VkPhysicalDevice physicalDevice, const VkDeviceCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator, VkDevice *pDevice, VkResult result) {
ValidationStateTracker::PostCallRecordCreateDevice(physicalDevice, pCreateInfo, pAllocator, pDevice, result);
ValidationObject *device_object = GetLayerDataPtr(get_dispatch_key(*pDevice), layer_data_map);
ValidationObject *validation_data = GetValidationObject(device_object->object_dispatch, this->container_type);
DebugPrintf *device_debug_printf = static_cast<DebugPrintf *>(validation_data);
device_debug_printf->physicalDevice = physicalDevice;
device_debug_printf->device = *pDevice;
const char *size_string = getLayerOption("khronos_validation.printf_buffer_size");
device_debug_printf->output_buffer_size = *size_string ? atoi(size_string) : 1024;
std::string verbose_string = getLayerOption("khronos_validation.printf_verbose");
transform(verbose_string.begin(), verbose_string.end(), verbose_string.begin(), ::tolower);
device_debug_printf->verbose = verbose_string.length() ? !verbose_string.compare("true") : false;
std::string stdout_string = getLayerOption("khronos_validation.printf_to_stdout");
transform(stdout_string.begin(), stdout_string.end(), stdout_string.begin(), ::tolower);
device_debug_printf->use_stdout = stdout_string.length() ? !stdout_string.compare("true") : false;
if (getenv("DEBUG_PRINTF_TO_STDOUT")) device_debug_printf->use_stdout = true;
if (device_debug_printf->phys_dev_props.apiVersion < VK_API_VERSION_1_1) {
ReportSetupProblem(device, "Debug Printf requires Vulkan 1.1 or later. Debug Printf disabled.");
device_debug_printf->aborted = true;
return;
}
if (!supported_features.fragmentStoresAndAtomics || !supported_features.vertexPipelineStoresAndAtomics) {
ReportSetupProblem(device,
"Debug Printf requires fragmentStoresAndAtomics and vertexPipelineStoresAndAtomics. "
"Debug Printf disabled.");
device_debug_printf->aborted = true;
return;
}
if (enabled[gpu_validation]) {
ReportSetupProblem(device,
"Debug Printf cannot be enabled when gpu assisted validation is enabled. "
"Debug Printf disabled.");
device_debug_printf->aborted = true;
return;
}
std::vector<VkDescriptorSetLayoutBinding> bindings;
VkDescriptorSetLayoutBinding binding = {3, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1,
VK_SHADER_STAGE_ALL_GRAPHICS | VK_SHADER_STAGE_MESH_BIT_NV |
VK_SHADER_STAGE_TASK_BIT_NV | VK_SHADER_STAGE_COMPUTE_BIT |
kShaderStageAllRayTracing,
NULL};
bindings.push_back(binding);
UtilPostCallRecordCreateDevice(pCreateInfo, bindings, device_debug_printf, device_debug_printf->phys_dev_props);
}
void DebugPrintf::PreCallRecordDestroyDevice(VkDevice device, const VkAllocationCallbacks *pAllocator) {
UtilPreCallRecordDestroyDevice(this);
ValidationStateTracker::PreCallRecordDestroyDevice(device, pAllocator);
// State Tracker can end up making vma calls through callbacks - don't destroy allocator until ST is done
if (vmaAllocator) {
vmaDestroyAllocator(vmaAllocator);
}
desc_set_manager.reset();
}
// Modify the pipeline layout to include our debug descriptor set and any needed padding with the dummy descriptor set.
void DebugPrintf::PreCallRecordCreatePipelineLayout(VkDevice device, const VkPipelineLayoutCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator, VkPipelineLayout *pPipelineLayout,
void *cpl_state_data) {
if (aborted) {
return;
}
create_pipeline_layout_api_state *cpl_state = reinterpret_cast<create_pipeline_layout_api_state *>(cpl_state_data);
if (cpl_state->modified_create_info.setLayoutCount >= adjusted_max_desc_sets) {
std::ostringstream strm;
strm << "Pipeline Layout conflict with validation's descriptor set at slot " << desc_set_bind_index << ". "
<< "Application has too many descriptor sets in the pipeline layout to continue with debug printf. "
<< "Not modifying the pipeline layout. "
<< "Instrumented shaders are replaced with non-instrumented shaders.";
ReportSetupProblem(device, strm.str().c_str());
} else {
UtilPreCallRecordCreatePipelineLayout(cpl_state, this, pCreateInfo);
}
}
void DebugPrintf::PostCallRecordCreatePipelineLayout(VkDevice device, const VkPipelineLayoutCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator, VkPipelineLayout *pPipelineLayout,
VkResult result) {
ValidationStateTracker::PostCallRecordCreatePipelineLayout(device, pCreateInfo, pAllocator, pPipelineLayout, result);
if (result != VK_SUCCESS) {
ReportSetupProblem(device, "Unable to create pipeline layout. Device could become unstable.");
aborted = true;
}
}
// Free the device memory and descriptor set associated with a command buffer.
void DebugPrintf::ResetCommandBuffer(VkCommandBuffer commandBuffer) {
if (aborted) {
return;
}
auto debug_printf_buffer_list = GetBufferInfo(commandBuffer);
for (const auto &buffer_info : debug_printf_buffer_list) {
vmaDestroyBuffer(vmaAllocator, buffer_info.output_mem_block.buffer, buffer_info.output_mem_block.allocation);
if (buffer_info.desc_set != VK_NULL_HANDLE) {
desc_set_manager->PutBackDescriptorSet(buffer_info.desc_pool, buffer_info.desc_set);
}
}
command_buffer_map.erase(commandBuffer);
}
// Just gives a warning about a possible deadlock.
bool DebugPrintf::PreCallValidateCmdWaitEvents(VkCommandBuffer commandBuffer, uint32_t eventCount, const VkEvent *pEvents,
VkPipelineStageFlags srcStageMask, VkPipelineStageFlags dstStageMask,
uint32_t memoryBarrierCount, const VkMemoryBarrier *pMemoryBarriers,
uint32_t bufferMemoryBarrierCount,
const VkBufferMemoryBarrier *pBufferMemoryBarriers, uint32_t imageMemoryBarrierCount,
const VkImageMemoryBarrier *pImageMemoryBarriers) const {
if (srcStageMask & VK_PIPELINE_STAGE_HOST_BIT) {
ReportSetupProblem(commandBuffer,
"CmdWaitEvents recorded with VK_PIPELINE_STAGE_HOST_BIT set. "
"Debug Printf waits on queue completion. "
"This wait could block the host's signaling of this event, resulting in deadlock.");
}
return false;
}
bool DebugPrintf::PreCallValidateCmdWaitEvents2KHR(VkCommandBuffer commandBuffer, uint32_t eventCount, const VkEvent *pEvents,
const VkDependencyInfoKHR *pDependencyInfos) const {
VkPipelineStageFlags2KHR srcStageMask = 0;
for (uint32_t i = 0; i < eventCount; i++) {
auto stage_masks = sync_utils::GetGlobalStageMasks(pDependencyInfos[i]);
srcStageMask = stage_masks.src;
}
if (srcStageMask & VK_PIPELINE_STAGE_HOST_BIT) {
ReportSetupProblem(commandBuffer,
"CmdWaitEvents2KHR recorded with VK_PIPELINE_STAGE_HOST_BIT set. "
"Debug Printf waits on queue completion. "
"This wait could block the host's signaling of this event, resulting in deadlock.");
}
return false;
}
void DebugPrintf::PreCallRecordCreateGraphicsPipelines(VkDevice device, VkPipelineCache pipelineCache, uint32_t count,
const VkGraphicsPipelineCreateInfo *pCreateInfos,
const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines,
void *cgpl_state_data) {
std::vector<safe_VkGraphicsPipelineCreateInfo> new_pipeline_create_infos;
create_graphics_pipeline_api_state *cgpl_state = reinterpret_cast<create_graphics_pipeline_api_state *>(cgpl_state_data);
UtilPreCallRecordPipelineCreations(count, pCreateInfos, pAllocator, pPipelines, cgpl_state->pipe_state,
&new_pipeline_create_infos, VK_PIPELINE_BIND_POINT_GRAPHICS, this);
cgpl_state->printf_create_infos = new_pipeline_create_infos;
cgpl_state->pCreateInfos = reinterpret_cast<VkGraphicsPipelineCreateInfo *>(cgpl_state->printf_create_infos.data());
}
void DebugPrintf::PreCallRecordCreateComputePipelines(VkDevice device, VkPipelineCache pipelineCache, uint32_t count,
const VkComputePipelineCreateInfo *pCreateInfos,
const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines,
void *ccpl_state_data) {
std::vector<safe_VkComputePipelineCreateInfo> new_pipeline_create_infos;
auto *ccpl_state = reinterpret_cast<create_compute_pipeline_api_state *>(ccpl_state_data);
UtilPreCallRecordPipelineCreations(count, pCreateInfos, pAllocator, pPipelines, ccpl_state->pipe_state,
&new_pipeline_create_infos, VK_PIPELINE_BIND_POINT_COMPUTE, this);
ccpl_state->printf_create_infos = new_pipeline_create_infos;
ccpl_state->pCreateInfos = reinterpret_cast<VkComputePipelineCreateInfo *>(ccpl_state->printf_create_infos.data());
}
void DebugPrintf::PreCallRecordCreateRayTracingPipelinesNV(VkDevice device, VkPipelineCache pipelineCache, uint32_t count,
const VkRayTracingPipelineCreateInfoNV *pCreateInfos,
const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines,
void *crtpl_state_data) {
std::vector<safe_VkRayTracingPipelineCreateInfoCommon> new_pipeline_create_infos;
auto *crtpl_state = reinterpret_cast<create_ray_tracing_pipeline_api_state *>(crtpl_state_data);
UtilPreCallRecordPipelineCreations(count, pCreateInfos, pAllocator, pPipelines, crtpl_state->pipe_state,
&new_pipeline_create_infos, VK_PIPELINE_BIND_POINT_RAY_TRACING_NV, this);
crtpl_state->printf_create_infos = new_pipeline_create_infos;
crtpl_state->pCreateInfos = reinterpret_cast<VkRayTracingPipelineCreateInfoNV *>(crtpl_state->printf_create_infos.data());
}
void DebugPrintf::PreCallRecordCreateRayTracingPipelinesKHR(VkDevice device, VkDeferredOperationKHR deferredOperation,
VkPipelineCache pipelineCache, uint32_t count,
const VkRayTracingPipelineCreateInfoKHR *pCreateInfos,
const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines,
void *crtpl_state_data) {
std::vector<safe_VkRayTracingPipelineCreateInfoCommon> new_pipeline_create_infos;
auto *crtpl_state = reinterpret_cast<create_ray_tracing_pipeline_khr_api_state *>(crtpl_state_data);
UtilPreCallRecordPipelineCreations(count, pCreateInfos, pAllocator, pPipelines, crtpl_state->pipe_state,
&new_pipeline_create_infos, VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR, this);
crtpl_state->printf_create_infos = new_pipeline_create_infos;
crtpl_state->pCreateInfos = reinterpret_cast<VkRayTracingPipelineCreateInfoKHR *>(crtpl_state->printf_create_infos.data());
}
void DebugPrintf::PostCallRecordCreateGraphicsPipelines(VkDevice device, VkPipelineCache pipelineCache, uint32_t count,
const VkGraphicsPipelineCreateInfo *pCreateInfos,
const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines,
VkResult result, void *cgpl_state_data) {
ValidationStateTracker::PostCallRecordCreateGraphicsPipelines(device, pipelineCache, count, pCreateInfos, pAllocator,
pPipelines, result, cgpl_state_data);
create_graphics_pipeline_api_state *cgpl_state = reinterpret_cast<create_graphics_pipeline_api_state *>(cgpl_state_data);
UtilCopyCreatePipelineFeedbackData(count, pCreateInfos, cgpl_state->printf_create_infos.data());
UtilPostCallRecordPipelineCreations(count, pCreateInfos, pAllocator, pPipelines, VK_PIPELINE_BIND_POINT_GRAPHICS, this);
}
void DebugPrintf::PostCallRecordCreateComputePipelines(VkDevice device, VkPipelineCache pipelineCache, uint32_t count,
const VkComputePipelineCreateInfo *pCreateInfos,
const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines,
VkResult result, void *ccpl_state_data) {
ValidationStateTracker::PostCallRecordCreateComputePipelines(device, pipelineCache, count, pCreateInfos, pAllocator, pPipelines,
result, ccpl_state_data);
create_compute_pipeline_api_state *ccpl_state = reinterpret_cast<create_compute_pipeline_api_state *>(ccpl_state_data);
UtilCopyCreatePipelineFeedbackData(count, pCreateInfos, ccpl_state->printf_create_infos.data());
UtilPostCallRecordPipelineCreations(count, pCreateInfos, pAllocator, pPipelines, VK_PIPELINE_BIND_POINT_COMPUTE, this);
}
void DebugPrintf::PostCallRecordCreateRayTracingPipelinesNV(VkDevice device, VkPipelineCache pipelineCache, uint32_t count,
const VkRayTracingPipelineCreateInfoNV *pCreateInfos,
const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines,
VkResult result, void *crtpl_state_data) {
auto *crtpl_state = reinterpret_cast<create_ray_tracing_pipeline_khr_api_state *>(crtpl_state_data);
ValidationStateTracker::PostCallRecordCreateRayTracingPipelinesNV(device, pipelineCache, count, pCreateInfos, pAllocator,
pPipelines, result, crtpl_state_data);
UtilCopyCreatePipelineFeedbackData(count, pCreateInfos, crtpl_state->printf_create_infos.data());
UtilPostCallRecordPipelineCreations(count, pCreateInfos, pAllocator, pPipelines, VK_PIPELINE_BIND_POINT_RAY_TRACING_NV, this);
}
void DebugPrintf::PostCallRecordCreateRayTracingPipelinesKHR(VkDevice device, VkDeferredOperationKHR deferredOperation,
VkPipelineCache pipelineCache, uint32_t count,
const VkRayTracingPipelineCreateInfoKHR *pCreateInfos,
const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines,
VkResult result, void *crtpl_state_data) {
auto *crtpl_state = reinterpret_cast<create_ray_tracing_pipeline_khr_api_state *>(crtpl_state_data);
ValidationStateTracker::PostCallRecordCreateRayTracingPipelinesKHR(
device, deferredOperation, pipelineCache, count, pCreateInfos, pAllocator, pPipelines, result, crtpl_state_data);
UtilCopyCreatePipelineFeedbackData(count, pCreateInfos, crtpl_state->printf_create_infos.data());
UtilPostCallRecordPipelineCreations(count, pCreateInfos, pAllocator, pPipelines, VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR, this);
}
// Remove all the shader trackers associated with this destroyed pipeline.
void DebugPrintf::PreCallRecordDestroyPipeline(VkDevice device, VkPipeline pipeline, const VkAllocationCallbacks *pAllocator) {
for (auto it = shader_map.begin(); it != shader_map.end();) {
if (it->second.pipeline == pipeline) {
it = shader_map.erase(it);
} else {
++it;
}
}
ValidationStateTracker::PreCallRecordDestroyPipeline(device, pipeline, pAllocator);
}
// Call the SPIR-V Optimizer to run the instrumentation pass on the shader.
bool DebugPrintf::InstrumentShader(const VkShaderModuleCreateInfo *pCreateInfo, std::vector<unsigned int> &new_pgm,
uint32_t *unique_shader_id) {
if (aborted) return false;
if (pCreateInfo->pCode[0] != spv::MagicNumber) return false;
// Load original shader SPIR-V
uint32_t num_words = static_cast<uint32_t>(pCreateInfo->codeSize / 4);
new_pgm.clear();
new_pgm.reserve(num_words);
new_pgm.insert(new_pgm.end(), &pCreateInfo->pCode[0], &pCreateInfo->pCode[num_words]);
// Call the optimizer to instrument the shader.
// Use the unique_shader_module_id as a shader ID so we can look up its handle later in the shader_map.
// If descriptor indexing is enabled, enable length checks and updated descriptor checks
using namespace spvtools;
spv_target_env target_env = PickSpirvEnv(api_version, (device_extensions.vk_khr_spirv_1_4 != kNotEnabled));
spvtools::ValidatorOptions val_options;
AdjustValidatorOptions(device_extensions, enabled_features, val_options);
spvtools::OptimizerOptions opt_options;
opt_options.set_run_validator(true);
opt_options.set_validator_options(val_options);
Optimizer optimizer(target_env);
const spvtools::MessageConsumer debug_printf_console_message_consumer =
[this](spv_message_level_t level, const char *, const spv_position_t &position, const char *message) -> void {
switch (level) {
case SPV_MSG_FATAL:
case SPV_MSG_INTERNAL_ERROR:
case SPV_MSG_ERROR:
this->LogError(this->device, "UNASSIGNED-Debug-Printf", "Error during shader instrumentation: line %zu: %s",
position.index, message);
break;
default:
break;
}
};
optimizer.SetMessageConsumer(debug_printf_console_message_consumer);
optimizer.RegisterPass(CreateInstDebugPrintfPass(desc_set_bind_index, unique_shader_module_id));
bool pass = optimizer.Run(new_pgm.data(), new_pgm.size(), &new_pgm, opt_options);
if (!pass) {
ReportSetupProblem(device, "Failure to instrument shader. Proceeding with non-instrumented shader.");
}
*unique_shader_id = unique_shader_module_id++;
return pass;
}
// Create the instrumented shader data to provide to the driver.
void DebugPrintf::PreCallRecordCreateShaderModule(VkDevice device, const VkShaderModuleCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator, VkShaderModule *pShaderModule,
void *csm_state_data) {
create_shader_module_api_state *csm_state = reinterpret_cast<create_shader_module_api_state *>(csm_state_data);
bool pass = InstrumentShader(pCreateInfo, csm_state->instrumented_pgm, &csm_state->unique_shader_id);
if (pass) {
csm_state->instrumented_create_info.pCode = csm_state->instrumented_pgm.data();
csm_state->instrumented_create_info.codeSize = csm_state->instrumented_pgm.size() * sizeof(unsigned int);
}
}
vartype vartype_lookup(char intype) {
switch (intype) {
case 'd':
case 'i':
return varsigned;
break;
case 'f':
case 'F':
case 'a':
case 'A':
case 'e':
case 'E':
case 'g':
case 'G':
return varfloat;
break;
case 'u':
case 'x':
case 'o':
default:
return varunsigned;
break;
}
}
std::vector<DPFSubstring> DebugPrintf::ParseFormatString(const std::string format_string) {
const char types[] = {'d', 'i', 'o', 'u', 'x', 'X', 'a', 'A', 'e', 'E', 'f', 'F', 'g', 'G', 'v', '\0'};
std::vector<DPFSubstring> parsed_strings;
size_t pos = 0;
size_t begin = 0;
size_t percent = 0;
while (begin < format_string.length()) {
DPFSubstring substring;
// Find a percent sign
pos = percent = format_string.find_first_of('%', pos);
if (pos == std::string::npos) {
// End of the format string Push the rest of the characters
substring.string = format_string.substr(begin, format_string.length());
substring.needs_value = false;
parsed_strings.push_back(substring);
break;
}
pos++;
if (format_string[pos] == '%') {
pos++;
continue; // %% - skip it
}
// Find the type of the value
pos = format_string.find_first_of(types, pos);
if (pos == format_string.npos) {
// This really shouldn't happen with a legal value string
pos = format_string.length();
} else {
char tempstring[32];
int count = 0;
std::string specifier = {};
if (format_string[pos] == 'v') {
// Vector must be of size 2, 3, or 4
// and format %v<size><type>
specifier = format_string.substr(percent, pos - percent);
count = atoi(&format_string[pos + 1]);
pos += 2;
// skip v<count>, handle long
specifier.push_back(format_string[pos]);
if (format_string[pos + 1] == 'l') {
specifier.push_back('l');
pos++;
}
// Take the preceding characters, and the percent through the type
substring.string = format_string.substr(begin, percent - begin);
substring.string += specifier;
substring.needs_value = true;
substring.type = vartype_lookup(specifier.back());
parsed_strings.push_back(substring);
// Continue with a comma separated list
sprintf(tempstring, ", %s", specifier.c_str());
substring.string = tempstring;
for (int i = 0; i < (count - 1); i++) {
parsed_strings.push_back(substring);
}
} else {
// Single non-vector value
if (format_string[pos + 1] == 'l') pos++; // Save long size
substring.string = format_string.substr(begin, pos - begin + 1);
substring.needs_value = true;
substring.type = vartype_lookup(format_string[pos]);
parsed_strings.push_back(substring);
}
begin = pos + 1;
}
}
return parsed_strings;
}
std::string DebugPrintf::FindFormatString(std::vector<unsigned int> pgm, uint32_t string_id) {
std::string format_string;
SHADER_MODULE_STATE shader;
shader.words = pgm;
if (shader.words.size() > 0) {
for (const auto &insn : shader) {
if (insn.opcode() == spv::OpString) {
uint32_t offset = insn.offset();
if (pgm[offset + 1] == string_id) {
format_string = reinterpret_cast<char *>(&pgm[offset + 2]);
break;
}
}
}
}
return format_string;
}
// GCC and clang don't like using variables as format strings in sprintf.
// #pragma GCC is recognized by both compilers
#if defined(__GNUC__) || defined(__clang__)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wformat-security"
#endif
void snprintf_with_malloc(std::stringstream &shader_message, DPFSubstring substring, size_t needed, void *values) {
char *buffer = static_cast<char *>(malloc((needed + 1) * sizeof(char))); // Add 1 for terminator
if (substring.longval) {
snprintf(buffer, needed, substring.string.c_str(), substring.longval);
} else if (!substring.needs_value) {
snprintf(buffer, needed, substring.string.c_str());
} else {
switch (substring.type) {
case varunsigned:
needed = snprintf(buffer, needed, substring.string.c_str(), *static_cast<uint32_t *>(values) - 1);
break;
case varsigned:
needed = snprintf(buffer, needed, substring.string.c_str(), *static_cast<int32_t *>(values) - 1);
break;
case varfloat:
needed = snprintf(buffer, needed, substring.string.c_str(), *static_cast<float *>(values) - 1);
break;
}
}
shader_message << buffer;
free(buffer);
}
void DebugPrintf::AnalyzeAndGenerateMessages(VkCommandBuffer command_buffer, VkQueue queue, DPFBufferInfo &buffer_info,
uint32_t operation_index, uint32_t *const debug_output_buffer) {
// Word Content
// 0 Size of output record, including this word
// 1 Shader ID
// 2 Instruction Position
// 3 Stage Ordinal
// 4 Stage - specific Info Word 0
// 5 Stage - specific Info Word 1
// 6 Stage - specific Info Word 2
// 7 Printf Format String Id
// 8 Printf Values Word 0 (optional)
// 9 Printf Values Word 1 (optional)
uint32_t expect = debug_output_buffer[0];
if (!expect) return;
uint32_t index = 1;
while (debug_output_buffer[index]) {
std::stringstream shader_message;
VkShaderModule shader_module_handle = VK_NULL_HANDLE;
VkPipeline pipeline_handle = VK_NULL_HANDLE;
std::vector<unsigned int> pgm;
DPFOutputRecord *debug_record = reinterpret_cast<DPFOutputRecord *>(&debug_output_buffer[index]);
// Lookup the VkShaderModule handle and SPIR-V code used to create the shader, using the unique shader ID value returned
// by the instrumented shader.
auto it = shader_map.find(debug_record->shader_id);
if (it != shader_map.end()) {
shader_module_handle = it->second.shader_module;
pipeline_handle = it->second.pipeline;
pgm = it->second.pgm;
}
// Search through the shader source for the printf format string for this invocation
auto format_string = FindFormatString(pgm, debug_record->format_string_id);
// Break the format string into strings with 1 or 0 value
auto format_substrings = ParseFormatString(format_string);
void *values = static_cast<void *>(&debug_record->values);
const uint32_t static_size = 1024;
// Sprintf each format substring into a temporary string then add that to the message
for (auto &substring : format_substrings) {
char temp_string[static_size];
size_t needed = 0;
std::vector<std::string> format_strings = { "%ul", "%lu", "%lx" };
size_t ul_pos = 0;
bool print_hex = true;
for (auto ul_string : format_strings) {
ul_pos = substring.string.find(ul_string);
if (ul_pos != std::string::npos) {
if (ul_string == "%lu") print_hex = false;
break;
}
}
if (ul_pos != std::string::npos) {
// Unsigned 64 bit value
substring.longval = *static_cast<uint64_t *>(values);
values = static_cast<uint64_t *>(values) + 1;
if (print_hex) {
substring.string.replace(ul_pos + 1, 2, PRIx64);
} else {
substring.string.replace(ul_pos + 1, 2, PRIu64);
}
needed = snprintf(temp_string, static_size, substring.string.c_str(), substring.longval);
} else {
if (substring.needs_value) {
switch (substring.type) {
case varunsigned:
needed = snprintf(temp_string, static_size, substring.string.c_str(), *static_cast<uint32_t *>(values));
break;
case varsigned:
needed = snprintf(temp_string, static_size, substring.string.c_str(), *static_cast<int32_t *>(values));
break;
case varfloat:
needed = snprintf(temp_string, static_size, substring.string.c_str(), *static_cast<float *>(values));
break;
}
values = static_cast<uint32_t *>(values) + 1;
} else {
needed = snprintf(temp_string, static_size, substring.string.c_str());
}
}
if (needed < static_size) {
shader_message << temp_string;
} else {
// Static buffer not big enough for message, use malloc to get enough
snprintf_with_malloc(shader_message, substring, needed, values);
}
}
if (verbose) {
std::string stage_message;
std::string common_message;
std::string filename_message;
std::string source_message;
UtilGenerateStageMessage(&debug_output_buffer[index], stage_message);
UtilGenerateCommonMessage(report_data, command_buffer, &debug_output_buffer[index], shader_module_handle,
pipeline_handle, buffer_info.pipeline_bind_point, operation_index, common_message);
UtilGenerateSourceMessages(pgm, &debug_output_buffer[index], true, filename_message, source_message);
if (use_stdout) {
std::cout << "UNASSIGNED-DEBUG-PRINTF " << common_message.c_str() << " " << stage_message.c_str() << " "
<< shader_message.str().c_str() << " " << filename_message.c_str() << " " << source_message.c_str();
} else {
LogInfo(queue, "UNASSIGNED-DEBUG-PRINTF", "%s %s %s %s%s", common_message.c_str(), stage_message.c_str(),
shader_message.str().c_str(), filename_message.c_str(), source_message.c_str());
}
} else {
if (use_stdout) {
std::cout << shader_message.str();
} else {
// Don't let LogInfo process any '%'s in the string
LogInfo(device, "UNASSIGNED-DEBUG-PRINTF", "%s", shader_message.str().c_str());
}
}
index += debug_record->size;
}
if ((index - 1) != expect) {
LogWarning(device, "UNASSIGNED-DEBUG-PRINTF",
"WARNING - Debug Printf message was truncated, likely due to a buffer size that was too small for the message");
}
memset(debug_output_buffer, 0, 4 * (debug_output_buffer[0] + 1));
}
#if defined(__GNUC__)
#pragma GCC diagnostic pop
#endif
bool DebugPrintf::CommandBufferNeedsProcessing(VkCommandBuffer command_buffer) {
bool buffers_present = false;
auto cb_node = GetCBState(command_buffer);
if (GetBufferInfo(cb_node->commandBuffer()).size()) {
buffers_present = true;
}
for (const auto *secondaryCmdBuffer : cb_node->linkedCommandBuffers) {
if (GetBufferInfo(secondaryCmdBuffer->commandBuffer()).size()) {
buffers_present = true;
}
}
return buffers_present;
}
void DebugPrintf::ProcessCommandBuffer(VkQueue queue, VkCommandBuffer command_buffer) {
auto cb_node = GetCBState(command_buffer);
UtilProcessInstrumentationBuffer(queue, cb_node, this);
for (auto *secondary_cmd_buffer : cb_node->linkedCommandBuffers) {
UtilProcessInstrumentationBuffer(queue, secondary_cmd_buffer, this);
}
}
// Issue a memory barrier to make GPU-written data available to host.
// Wait for the queue to complete execution.
// Check the debug buffers for all the command buffers that were submitted.
void DebugPrintf::PostCallRecordQueueSubmit(VkQueue queue, uint32_t submitCount, const VkSubmitInfo *pSubmits, VkFence fence,
VkResult result) {
ValidationStateTracker::PostCallRecordQueueSubmit(queue, submitCount, pSubmits, fence, result);
if (aborted || (result != VK_SUCCESS)) return;
bool buffers_present = false;
// Don't QueueWaitIdle if there's nothing to process
for (uint32_t submit_idx = 0; submit_idx < submitCount; submit_idx++) {
const VkSubmitInfo *submit = &pSubmits[submit_idx];
for (uint32_t i = 0; i < submit->commandBufferCount; i++) {
buffers_present |= CommandBufferNeedsProcessing(submit->pCommandBuffers[i]);
}
}
if (!buffers_present) return;
UtilSubmitBarrier(queue, this);
DispatchQueueWaitIdle(queue);
for (uint32_t submit_idx = 0; submit_idx < submitCount; submit_idx++) {
const VkSubmitInfo *submit = &pSubmits[submit_idx];
for (uint32_t i = 0; i < submit->commandBufferCount; i++) {
ProcessCommandBuffer(queue, submit->pCommandBuffers[i]);
}
}
}
void DebugPrintf::PostCallRecordQueueSubmit2KHR(VkQueue queue, uint32_t submitCount, const VkSubmitInfo2KHR *pSubmits,
VkFence fence, VkResult result) {
ValidationStateTracker::PostCallRecordQueueSubmit2KHR(queue, submitCount, pSubmits, fence, result);
if (aborted || (result != VK_SUCCESS)) return;
bool buffers_present = false;
// Don't QueueWaitIdle if there's nothing to process
for (uint32_t submit_idx = 0; submit_idx < submitCount; submit_idx++) {
const auto *submit = &pSubmits[submit_idx];
for (uint32_t i = 0; i < submit->commandBufferInfoCount; i++) {
buffers_present |= CommandBufferNeedsProcessing(submit->pCommandBufferInfos[i].commandBuffer);
}
}
if (!buffers_present) return;
UtilSubmitBarrier(queue, this);
DispatchQueueWaitIdle(queue);
for (uint32_t submit_idx = 0; submit_idx < submitCount; submit_idx++) {
const VkSubmitInfo2KHR *submit = &pSubmits[submit_idx];
for (uint32_t i = 0; i < submit->commandBufferInfoCount; i++) {
ProcessCommandBuffer(queue, submit->pCommandBufferInfos[i].commandBuffer);
}
}
}
void DebugPrintf::PreCallRecordCmdDraw(VkCommandBuffer commandBuffer, uint32_t vertexCount, uint32_t instanceCount,
uint32_t firstVertex, uint32_t firstInstance) {
AllocateDebugPrintfResources(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS);
}
void DebugPrintf::PreCallRecordCmdDrawIndexed(VkCommandBuffer commandBuffer, uint32_t indexCount, uint32_t instanceCount,
uint32_t firstIndex, int32_t vertexOffset, uint32_t firstInstance) {
AllocateDebugPrintfResources(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS);
}
void DebugPrintf::PreCallRecordCmdDrawIndirect(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset, uint32_t count,
uint32_t stride) {
AllocateDebugPrintfResources(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS);
}
void DebugPrintf::PreCallRecordCmdDrawIndexedIndirect(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
uint32_t count, uint32_t stride) {
AllocateDebugPrintfResources(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS);
}
void DebugPrintf::PreCallRecordCmdDispatch(VkCommandBuffer commandBuffer, uint32_t x, uint32_t y, uint32_t z) {
AllocateDebugPrintfResources(commandBuffer, VK_PIPELINE_BIND_POINT_COMPUTE);
}
void DebugPrintf::PreCallRecordCmdDispatchIndirect(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset) {
AllocateDebugPrintfResources(commandBuffer, VK_PIPELINE_BIND_POINT_COMPUTE);
}
void DebugPrintf::PreCallRecordCmdDispatchBase(VkCommandBuffer commandBuffer, uint32_t baseGroupX, uint32_t baseGroupY,
uint32_t baseGroupZ, uint32_t groupCountX, uint32_t groupCountY,
uint32_t groupCountZ) {
AllocateDebugPrintfResources(commandBuffer, VK_PIPELINE_BIND_POINT_COMPUTE);
}
void DebugPrintf::PreCallRecordCmdDispatchBaseKHR(VkCommandBuffer commandBuffer, uint32_t baseGroupX, uint32_t baseGroupY,
uint32_t baseGroupZ, uint32_t groupCountX, uint32_t groupCountY,
uint32_t groupCountZ) {
AllocateDebugPrintfResources(commandBuffer, VK_PIPELINE_BIND_POINT_COMPUTE);
}
void DebugPrintf::PreCallRecordCmdDrawIndirectCountKHR(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
VkBuffer countBuffer, VkDeviceSize countBufferOffset, uint32_t maxDrawCount,
uint32_t stride) {
ValidationStateTracker::PreCallRecordCmdDrawIndirectCountKHR(commandBuffer, buffer, offset, countBuffer, countBufferOffset,
maxDrawCount, stride);
AllocateDebugPrintfResources(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS);
}
void DebugPrintf::PreCallRecordCmdDrawIndirectCount(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
VkBuffer countBuffer, VkDeviceSize countBufferOffset, uint32_t maxDrawCount,
uint32_t stride) {
ValidationStateTracker::PreCallRecordCmdDrawIndirectCount(commandBuffer, buffer, offset, countBuffer, countBufferOffset,
maxDrawCount, stride);
AllocateDebugPrintfResources(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS);
}
void DebugPrintf::PreCallRecordCmdDrawIndexedIndirectCountKHR(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
VkBuffer countBuffer, VkDeviceSize countBufferOffset,
uint32_t maxDrawCount, uint32_t stride) {
ValidationStateTracker::PreCallRecordCmdDrawIndexedIndirectCountKHR(commandBuffer, buffer, offset, countBuffer,
countBufferOffset, maxDrawCount, stride);
AllocateDebugPrintfResources(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS);
}
void DebugPrintf::PreCallRecordCmdDrawIndexedIndirectCount(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
VkBuffer countBuffer, VkDeviceSize countBufferOffset,
uint32_t maxDrawCount, uint32_t stride) {
ValidationStateTracker::PreCallRecordCmdDrawIndexedIndirectCount(commandBuffer, buffer, offset, countBuffer, countBufferOffset,
maxDrawCount, stride);
AllocateDebugPrintfResources(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS);
}
void DebugPrintf::PreCallRecordCmdDrawIndirectByteCountEXT(VkCommandBuffer commandBuffer, uint32_t instanceCount,
uint32_t firstInstance, VkBuffer counterBuffer,
VkDeviceSize counterBufferOffset, uint32_t counterOffset,
uint32_t vertexStride) {
ValidationStateTracker::PreCallRecordCmdDrawIndirectByteCountEXT(commandBuffer, instanceCount, firstInstance, counterBuffer,
counterBufferOffset, counterOffset, vertexStride);
AllocateDebugPrintfResources(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS);
}
void DebugPrintf::PreCallRecordCmdDrawMeshTasksNV(VkCommandBuffer commandBuffer, uint32_t taskCount, uint32_t firstTask) {
ValidationStateTracker::PreCallRecordCmdDrawMeshTasksNV(commandBuffer, taskCount, firstTask);
AllocateDebugPrintfResources(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS);
}
void DebugPrintf::PreCallRecordCmdDrawMeshTasksIndirectNV(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
uint32_t drawCount, uint32_t stride) {
ValidationStateTracker::PreCallRecordCmdDrawMeshTasksIndirectNV(commandBuffer, buffer, offset, drawCount, stride);
AllocateDebugPrintfResources(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS);
}
void DebugPrintf::PreCallRecordCmdDrawMeshTasksIndirectCountNV(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
VkBuffer countBuffer, VkDeviceSize countBufferOffset,
uint32_t maxDrawCount, uint32_t stride) {
ValidationStateTracker::PreCallRecordCmdDrawMeshTasksIndirectCountNV(commandBuffer, buffer, offset, countBuffer,
countBufferOffset, maxDrawCount, stride);
AllocateDebugPrintfResources(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS);
}
void DebugPrintf::PreCallRecordCmdTraceRaysNV(VkCommandBuffer commandBuffer, VkBuffer raygenShaderBindingTableBuffer,
VkDeviceSize raygenShaderBindingOffset, VkBuffer missShaderBindingTableBuffer,
VkDeviceSize missShaderBindingOffset, VkDeviceSize missShaderBindingStride,
VkBuffer hitShaderBindingTableBuffer, VkDeviceSize hitShaderBindingOffset,
VkDeviceSize hitShaderBindingStride, VkBuffer callableShaderBindingTableBuffer,
VkDeviceSize callableShaderBindingOffset, VkDeviceSize callableShaderBindingStride,
uint32_t width, uint32_t height, uint32_t depth) {
AllocateDebugPrintfResources(commandBuffer, VK_PIPELINE_BIND_POINT_RAY_TRACING_NV);
}
void DebugPrintf::PostCallRecordCmdTraceRaysNV(VkCommandBuffer commandBuffer, VkBuffer raygenShaderBindingTableBuffer,
VkDeviceSize raygenShaderBindingOffset, VkBuffer missShaderBindingTableBuffer,
VkDeviceSize missShaderBindingOffset, VkDeviceSize missShaderBindingStride,
VkBuffer hitShaderBindingTableBuffer, VkDeviceSize hitShaderBindingOffset,
VkDeviceSize hitShaderBindingStride, VkBuffer callableShaderBindingTableBuffer,
VkDeviceSize callableShaderBindingOffset, VkDeviceSize callableShaderBindingStride,
uint32_t width, uint32_t height, uint32_t depth) {
CMD_BUFFER_STATE *cb_state = GetCBState(commandBuffer);
cb_state->hasTraceRaysCmd = true;
}
void DebugPrintf::PreCallRecordCmdTraceRaysKHR(VkCommandBuffer commandBuffer,
const VkStridedDeviceAddressRegionKHR *pRaygenShaderBindingTable,
const VkStridedDeviceAddressRegionKHR *pMissShaderBindingTable,
const VkStridedDeviceAddressRegionKHR *pHitShaderBindingTable,
const VkStridedDeviceAddressRegionKHR *pCallableShaderBindingTable, uint32_t width,
uint32_t height, uint32_t depth) {
AllocateDebugPrintfResources(commandBuffer, VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR);
}
void DebugPrintf::PostCallRecordCmdTraceRaysKHR(VkCommandBuffer commandBuffer,
const VkStridedDeviceAddressRegionKHR *pRaygenShaderBindingTable,
const VkStridedDeviceAddressRegionKHR *pMissShaderBindingTable,
const VkStridedDeviceAddressRegionKHR *pHitShaderBindingTable,
const VkStridedDeviceAddressRegionKHR *pCallableShaderBindingTable, uint32_t width,
uint32_t height, uint32_t depth) {
CMD_BUFFER_STATE *cb_state = GetCBState(commandBuffer);
cb_state->hasTraceRaysCmd = true;
}
void DebugPrintf::PreCallRecordCmdTraceRaysIndirectKHR(VkCommandBuffer commandBuffer,
const VkStridedDeviceAddressRegionKHR *pRaygenShaderBindingTable,
const VkStridedDeviceAddressRegionKHR *pMissShaderBindingTable,
const VkStridedDeviceAddressRegionKHR *pHitShaderBindingTable,
const VkStridedDeviceAddressRegionKHR *pCallableShaderBindingTable,
VkDeviceAddress indirectDeviceAddress) {
AllocateDebugPrintfResources(commandBuffer, VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR);
}
void DebugPrintf::PostCallRecordCmdTraceRaysIndirectKHR(VkCommandBuffer commandBuffer,
const VkStridedDeviceAddressRegionKHR *pRaygenShaderBindingTable,
const VkStridedDeviceAddressRegionKHR *pMissShaderBindingTable,
const VkStridedDeviceAddressRegionKHR *pHitShaderBindingTable,
const VkStridedDeviceAddressRegionKHR *pCallableShaderBindingTable,
VkDeviceAddress indirectDeviceAddress) {
CMD_BUFFER_STATE *cb_state = GetCBState(commandBuffer);
cb_state->hasTraceRaysCmd = true;
}
void DebugPrintf::AllocateDebugPrintfResources(const VkCommandBuffer cmd_buffer, const VkPipelineBindPoint bind_point) {
if (bind_point != VK_PIPELINE_BIND_POINT_GRAPHICS && bind_point != VK_PIPELINE_BIND_POINT_COMPUTE &&
bind_point != VK_PIPELINE_BIND_POINT_RAY_TRACING_NV) {
return;
}
VkResult result;
if (aborted) return;
std::vector<VkDescriptorSet> desc_sets;
VkDescriptorPool desc_pool = VK_NULL_HANDLE;
result = desc_set_manager->GetDescriptorSets(1, &desc_pool, debug_desc_layout, &desc_sets);
assert(result == VK_SUCCESS);
if (result != VK_SUCCESS) {
ReportSetupProblem(device, "Unable to allocate descriptor sets. Device could become unstable.");
aborted = true;
return;
}
VkDescriptorBufferInfo output_desc_buffer_info = {};
output_desc_buffer_info.range = output_buffer_size;
auto cb_node = GetCBState(cmd_buffer);
if (!cb_node) {
ReportSetupProblem(device, "Unrecognized command buffer");
aborted = true;
return;
}
// Allocate memory for the output block that the gpu will use to return values for printf
DPFDeviceMemoryBlock output_block = {};
VkBufferCreateInfo buffer_info = {VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO};
buffer_info.size = output_buffer_size;
buffer_info.usage = VK_BUFFER_USAGE_STORAGE_BUFFER_BIT;
VmaAllocationCreateInfo alloc_info = {};
alloc_info.usage = VMA_MEMORY_USAGE_GPU_TO_CPU;
result = vmaCreateBuffer(vmaAllocator, &buffer_info, &alloc_info, &output_block.buffer, &output_block.allocation, nullptr);
if (result != VK_SUCCESS) {
ReportSetupProblem(device, "Unable to allocate device memory. Device could become unstable.");
aborted = true;
return;
}
// Clear the output block to zeros so that only printf values from the gpu will be present
uint32_t *data;
result = vmaMapMemory(vmaAllocator, output_block.allocation, reinterpret_cast<void **>(&data));
if (result == VK_SUCCESS) {
memset(data, 0, output_buffer_size);
vmaUnmapMemory(vmaAllocator, output_block.allocation);
}
auto desc_writes = LvlInitStruct<VkWriteDescriptorSet>();
const uint32_t desc_count = 1;
// Write the descriptor
output_desc_buffer_info.buffer = output_block.buffer;
output_desc_buffer_info.offset = 0;
desc_writes.descriptorCount = 1;
desc_writes.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER;
desc_writes.pBufferInfo = &output_desc_buffer_info;
desc_writes.dstSet = desc_sets[0];
desc_writes.dstBinding = 3;
DispatchUpdateDescriptorSets(device, desc_count, &desc_writes, 0, NULL);
const auto lv_bind_point = ConvertToLvlBindPoint(bind_point);
const auto *pipeline_state = cb_node->lastBound[lv_bind_point].pipeline_state;
if (pipeline_state) {
if (pipeline_state->pipeline_layout->set_layouts.size() <= desc_set_bind_index) {
DispatchCmdBindDescriptorSets(cmd_buffer, bind_point, pipeline_state->pipeline_layout->layout(), desc_set_bind_index, 1,
desc_sets.data(), 0, nullptr);
}
// Record buffer and memory info in CB state tracking
GetBufferInfo(cmd_buffer).emplace_back(output_block, desc_sets[0], desc_pool, bind_point);
} else {
ReportSetupProblem(device, "Unable to find pipeline state");
vmaDestroyBuffer(vmaAllocator, output_block.buffer, output_block.allocation);
aborted = true;
return;
}
}