This repository has been archived by the owner on Jul 20, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 14
/
deploy-model.js
154 lines (138 loc) · 5.32 KB
/
deploy-model.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
/*
* Copyright 2020 Google LLC
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
'use strict';
async function main(
modelId,
deployedModelDisplayName,
endpointId,
project,
location = 'us-central1'
) {
// [START aiplatform_deploy_model_sample]
/**
* TODO(developer): Uncomment these variables before running the sample.\
* (Not necessary if passing values as arguments)
*/
// const modelId = "YOUR_MODEL_ID";
// const endpointId = 'YOUR_ENDPOINT_ID';
// const deployedModelDisplayName = 'YOUR_DEPLOYED_MODEL_DISPLAY_NAME';
// const project = 'YOUR_PROJECT_ID';
// const location = 'YOUR_PROJECT_LOCATION';
const modelName = `projects/${project}/locations/${location}/models/${modelId}`;
const endpoint = `projects/${project}/locations/${location}/endpoints/${endpointId}`;
// Imports the Google Cloud Endpoint Service Client library
const {EndpointServiceClient} = require('@google-cloud/aiplatform');
// Specifies the location of the api endpoint:
const clientOptions = {
apiEndpoint: 'us-central1-aiplatform.googleapis.com',
};
// Instantiates a client
const endpointServiceClient = new EndpointServiceClient(clientOptions);
async function deployModel() {
// Configure the parent resource
// key '0' assigns traffic for the newly deployed model
// Traffic percentage values must add up to 100
// Leave dictionary empty if endpoint should not accept any traffic
const trafficSplit = {0: 100};
const deployedModel = {
// format: 'projects/{project}/locations/{location}/models/{model}'
model: modelName,
displayName: deployedModelDisplayName,
// AutoML Vision models require `automatic_resources` field
// Other model types may require `dedicated_resources` field instead
automaticResources: {minReplicaCount: 1, maxReplicaCount: 1},
};
const request = {
endpoint,
deployedModel,
trafficSplit,
};
// Get and print out a list of all the endpoints for this resource
const [response] = await endpointServiceClient.deployModel(request);
console.log(`Long running operation : ${response.name}`);
// Wait for operation to complete
await response.promise();
const result = response.result;
console.log('Deploy model response');
const modelDeployed = result.deployedModel;
console.log('\tDeployed model');
if (!modelDeployed) {
console.log('\t\tId : {}');
console.log('\t\tModel : {}');
console.log('\t\tDisplay name : {}');
console.log('\t\tCreate time : {}');
console.log('\t\tDedicated resources');
console.log('\t\t\tMin replica count : {}');
console.log('\t\t\tMachine spec {}');
console.log('\t\t\t\tMachine type : {}');
console.log('\t\t\t\tAccelerator type : {}');
console.log('\t\t\t\tAccelerator count : {}');
console.log('\t\tAutomatic resources');
console.log('\t\t\tMin replica count : {}');
console.log('\t\t\tMax replica count : {}');
} else {
console.log(`\t\tId : ${modelDeployed.id}`);
console.log(`\t\tModel : ${modelDeployed.model}`);
console.log(`\t\tDisplay name : ${modelDeployed.displayName}`);
console.log(`\t\tCreate time : ${modelDeployed.createTime}`);
const dedicatedResources = modelDeployed.dedicatedResources;
console.log('\t\tDedicated resources');
if (!dedicatedResources) {
console.log('\t\t\tMin replica count : {}');
console.log('\t\t\tMachine spec {}');
console.log('\t\t\t\tMachine type : {}');
console.log('\t\t\t\tAccelerator type : {}');
console.log('\t\t\t\tAccelerator count : {}');
} else {
console.log(
`\t\t\tMin replica count : \
${dedicatedResources.minReplicaCount}`
);
const machineSpec = dedicatedResources.machineSpec;
console.log('\t\t\tMachine spec');
console.log(`\t\t\t\tMachine type : ${machineSpec.machineType}`);
console.log(
`\t\t\t\tAccelerator type : ${machineSpec.acceleratorType}`
);
console.log(
`\t\t\t\tAccelerator count : ${machineSpec.acceleratorCount}`
);
}
const automaticResources = modelDeployed.automaticResources;
console.log('\t\tAutomatic resources');
if (!automaticResources) {
console.log('\t\t\tMin replica count : {}');
console.log('\t\t\tMax replica count : {}');
} else {
console.log(
`\t\t\tMin replica count : \
${automaticResources.minReplicaCount}`
);
console.log(
`\t\t\tMax replica count : \
${automaticResources.maxReplicaCount}`
);
}
}
}
deployModel();
// [END aiplatform_deploy_model_sample]
}
process.on('unhandledRejection', err => {
console.error(err.message);
process.exitCode = 1;
});
main(...process.argv.slice(2));