This repository has been archived by the owner on Jul 20, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 14
/
create-training-pipeline-image-object-detection.js
100 lines (86 loc) · 3.27 KB
/
create-training-pipeline-image-object-detection.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
/*
* Copyright 2020 Google LLC
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
'use strict';
async function main(
datasetId,
modelDisplayName,
trainingPipelineDisplayName,
project,
location = 'us-central1'
) {
// [START aiplatform_create_training_pipeline_image_object_detection_sample]
/**
* TODO(developer): Uncomment these variables before running the sample.\
* (Not necessary if passing values as arguments)
*/
// const datasetId = 'YOUR_DATASET_ID';
// const modelDisplayName = 'YOUR_MODEL_DISPLAY_NAME';
// const trainingPipelineDisplayName = 'YOUR_TRAINING_PIPELINE_DISPLAY_NAME';
// const project = 'YOUR_PROJECT_ID';
// const location = 'YOUR_PROJECT_LOCATION';
const aiplatform = require('@google-cloud/aiplatform');
const {definition} =
aiplatform.protos.google.cloud.aiplatform.v1.schema.trainingjob;
const ModelType = definition.AutoMlImageObjectDetectionInputs.ModelType;
// Imports the Google Cloud Pipeline Service Client library
const {PipelineServiceClient} = aiplatform.v1;
// Specifies the location of the api endpoint
const clientOptions = {
apiEndpoint: 'us-central1-aiplatform.googleapis.com',
};
// Instantiates a client
const pipelineServiceClient = new PipelineServiceClient(clientOptions);
async function createTrainingPipelineImageObjectDetection() {
// Configure the parent resource
const parent = `projects/${project}/locations/${location}`;
const trainingTaskInputsObj =
new definition.AutoMlImageObjectDetectionInputs({
disableEarlyStopping: false,
modelType: ModelType.CLOUD_HIGH_ACCURACY_1,
budgetMilliNodeHours: 20000,
});
const trainingTaskInputs = trainingTaskInputsObj.toValue();
const modelToUpload = {displayName: modelDisplayName};
const inputDataConfig = {datasetId: datasetId};
const trainingPipeline = {
displayName: trainingPipelineDisplayName,
trainingTaskDefinition:
'gs://google-cloud-aiplatform/schema/trainingjob/definition/automl_image_object_detection_1.0.0.yaml',
trainingTaskInputs,
inputDataConfig,
modelToUpload,
};
const request = {
parent,
trainingPipeline,
};
// Create training pipeline request
const [response] = await pipelineServiceClient.createTrainingPipeline(
request
);
console.log('Create training pipeline image object detection response');
console.log(`Name : ${response.name}`);
console.log('Raw response:');
console.log(JSON.stringify(response, null, 2));
}
createTrainingPipelineImageObjectDetection();
// [END aiplatform_create_training_pipeline_image_object_detection_sample]
}
process.on('unhandledRejection', err => {
console.error(err.message);
process.exitCode = 1;
});
main(...process.argv.slice(2));