This repository has been archived by the owner on Dec 29, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 40
/
Copy pathtrain_and_eval.py
335 lines (256 loc) · 13.6 KB
/
train_and_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
#!/usr/bin/python
#
# Copyright 2019 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=line-too-long
r"""The main script for starting training and evaluation.
How to run:
blaze run -c opt --config=dmtf_cuda \
learning/brain/research/dune/experimental/representation/release/train_and_eval -- \
--workdir /tmp/test \
--config /google/src/cloud/akolesnikov/release/release/config/supervised/imagenet.py \
--nouse_tpu
"""
# pylint: enable=line-too-long
from __future__ import absolute_import
from __future__ import division
import functools
import math
import os
import absl.app as app
import absl.flags as flags
import absl.logging as logging
import tensorflow as tf
import tensorflow_hub as hub
import datasets
from self_supervision.self_supervision_lib import get_self_supervision_model
import utils
from tensorflow.contrib.cluster_resolver import TPUClusterResolver
FLAGS = flags.FLAGS
# General run setup flags.
flags.DEFINE_string('workdir', None, 'Where to store files.')
flags.mark_flag_as_required('workdir')
flags.DEFINE_integer('num_gpus', 1, 'Number of GPUs to use.')
flags.DEFINE_bool('use_tpu', True, 'Whether running on TPU or not.')
flags.DEFINE_bool('run_eval', False, 'Run eval mode')
flags.DEFINE_string('tpu_worker_name', 'tpu_worker',
'Name of a TPU worker.')
# More detailed experiment flags
flags.DEFINE_string('dataset', None, 'Which dataset to use, typically '
'`imagenet`.')
flags.mark_flag_as_required('dataset')
flags.DEFINE_string('dataset_dir', None, 'Location of the dataset files.')
flags.mark_flag_as_required('dataset_dir')
flags.DEFINE_integer('eval_batch_size', None, 'Optional different batch-size'
' evaluation, defaults to the same as `batch_size`.')
flags.DEFINE_integer('keep_checkpoint_every_n_hours', None, 'Keep one '
'checkpoint every this many hours. Otherwise, only the '
'last few ones are kept. Defaults to 4h.')
flags.DEFINE_integer('random_seed', None, 'Seed to use. None is random.')
flags.DEFINE_integer('save_checkpoints_secs', None, 'Every how many seconds '
'to save a checkpoint. Defaults to 600 ie every 10mins.')
flags.DEFINE_string('serving_input_key', None, 'The name of the input tensor '
'in the generated hub module. Just leave it at default.')
flags.DEFINE_string('serving_input_shape', None, 'The shape of the input tensor'
' in the stored hub module. Can contain `None`.')
flags.DEFINE_string('signature', None, 'The name of the tensor to use as '
'representation for evaluation. Just leave to default.')
flags.DEFINE_string('task', None, 'Which pretext-task to learn from. Can be '
'one of `rotation`, `exemplar`, `jigsaw`, '
'`relative_patch_location`, `linear_eval`, `supervised`.')
flags.mark_flag_as_required('task')
flags.DEFINE_string('train_split', None, 'Which dataset split to train on. '
'Should only be `train` (default) or `trainval`.')
flags.DEFINE_string('val_split', None, 'Which dataset split to eval on. '
'Should only be `val` (default) or `test`.')
# Flags about the pretext tasks
flags.DEFINE_integer('embed_dim', None, 'For most pretext tasks, which '
'dimension the embedding/hidden vector should be. '
'Defaults to 1000.')
flags.DEFINE_float('margin', None, 'For the `exemplar` pretext task, '
'how large the triplet loss margin should be.')
flags.DEFINE_integer('num_of_inception_patches', None, 'For the Exemplar '
'pretext task, how many instances of an image to create.')
flags.DEFINE_integer('patch_jitter', None, 'For patch-based methods, by how '
'many pixels to jitter the patches. Defaults to 0.')
flags.DEFINE_integer('perm_subset_size', None, 'Subset of permutations to '
'sample per example in the `jigsaw` pretext task. '
'Defaults to 8.')
flags.DEFINE_integer('splits_per_side', None, 'For the `crop_patches` '
'preprocessor, how many times to split a side. '
'For example, 3 will result in 3x3=9 patches.')
# Flags for evaluation.
flags.DEFINE_string('eval_model', None, 'Whether to perform evaluation with a '
'`linear` (default) model, or with an `mlp` model.')
flags.DEFINE_string('hub_module', None, 'Folder where the hub module that '
'should be evaluated is stored.')
flags.DEFINE_string('pool_mode', None, 'When running evaluation on '
'intermediate layers (not logits) of the network, it is '
'commonplace to pool the features down to 9000. This '
'decides the pooling method to be used: `adaptive_max` '
'(default), `adaptive_avg`, `max`, or `avg`.')
flags.DEFINE_string('combine_patches', None, 'When running evaluation on '
'patch models, it is used to merge patch representations'
'to the full image representation. The value should be set'
'to `avg_pool`(default), or `concat`.')
# Flags about the model.
flags.DEFINE_string('architecture', None,
help='Which basic network architecture to use. '
'One of vgg19, resnet50, revnet50.')
# flags.mark_flag_as_required('architecture') # Not required in eval mode.
flags.DEFINE_integer('filters_factor', None, 'Widening factor for network '
'filters. For ResNet, default = 4 = vanilla ResNet.')
flags.DEFINE_bool('last_relu', None, 'Whether to include (default) the final '
'ReLU layer in ResNet/RevNet models or not.')
flags.DEFINE_string('mode', None, 'Which ResNet to use, `v1` or `v2`.')
# Flags about the optimization process.
flags.DEFINE_integer('batch_size', None, 'The global batch-size to use.')
flags.mark_flag_as_required('batch_size')
flags.DEFINE_string('decay_epochs', None, 'Optional list of epochs at which '
'learning-rate decay should happen, such as `15,25`.')
flags.DEFINE_integer('epochs', None, 'Number of epochs to run training.')
flags.mark_flag_as_required('epochs')
flags.DEFINE_float('lr_decay_factor', None, 'Factor by which to decay the '
'learning-rate at each decay step. Default 0.1.')
flags.DEFINE_float('lr', None, 'The base learning-rate to use for training.')
flags.mark_flag_as_required('lr')
flags.DEFINE_float('lr_scale_batch_size', None, 'The batch-size for which the '
'base learning-rate `lr` is defined. For batch-sizes '
'different from that, it is scaled linearly accordingly.'
'For example lr=0.1, batch_size=128, lr_scale_batch_size=32'
', then actual lr=0.025.')
flags.mark_flag_as_required('lr_scale_batch_size')
flags.DEFINE_string('optimizer', None, 'Which optimizer to use. '
'Only `sgd` (default) or `adam` are supported.')
flags.DEFINE_integer('warmup_epochs', None, 'Duration of the linear learning-'
'rate warm-up (from 0 to actual). Defaults to 0.')
flags.DEFINE_float('weight_decay', None, 'Strength of weight-decay. '
'Defaults to 1e-4, and may be set to 0.')
# Flags about pre-processing/data augmentation.
flags.DEFINE_string('crop_size', None, 'Size of the crop when using `crop` '
'or `central_crop` preprocessing. Either a single '
'integer like `32` or a pair like `32,24`.')
flags.DEFINE_float('grayscale_probability', None, 'When using `to_gray` '
'preprocessing, probability of actually doing it. Defaults '
'to 1.0, i.e. deterministically grayscaling the input.')
flags.DEFINE_string('preprocessing', None, 'A comma-separated list of '
'pre-processing steps to perform, see preprocess.py.')
flags.mark_flag_as_required('preprocessing')
flags.DEFINE_bool('randomize_resize_method', None, 'Whether or not (default) '
'to use a random interpolation method in the `resize` '
'preprocessor.')
flags.DEFINE_string('resize_size', None, 'For the `resize`, '
'`inception_preprocess`, and '
'`crop_inception_preprocess_patches` preprocessors, the '
'size in pixels to which to resize the input. Can be a '
'single number for square, or a pair as `128,64`.')
flags.DEFINE_integer('smaller_size', None, 'For the `resize_small` preprocessor'
', the desired size that the smaller side should have '
'after resizing the image (keeping aspect ratio).')
# Number of iterations (=training steps) per TPU training loop. Use >100 for
# good speed. This is the minimum number of steps between checkpoints.
TPU_ITERATIONS_PER_LOOP = 500
def train_and_eval():
"""Trains a network on (self) supervised data."""
checkpoint_dir = os.path.join(FLAGS.workdir)
if FLAGS.use_tpu:
master = TPUClusterResolver(
tpu=[os.environ['TPU_NAME']]).get_master()
else:
master = ''
config = tf.contrib.tpu.RunConfig(
model_dir=checkpoint_dir,
tf_random_seed=FLAGS.get_flag_value('random_seed', None),
master=master,
evaluation_master=master,
keep_checkpoint_every_n_hours=FLAGS.get_flag_value(
'keep_checkpoint_every_n_hours', 4),
save_checkpoints_secs=FLAGS.get_flag_value('save_checkpoints_secs', 600),
tpu_config=tf.contrib.tpu.TPUConfig(
iterations_per_loop=TPU_ITERATIONS_PER_LOOP,
tpu_job_name=FLAGS.tpu_worker_name))
# The global batch-sizes are passed to the TPU estimator, and it will pass
# along the local batch size in the model_fn's `params` argument dict.
estimator = tf.contrib.tpu.TPUEstimator(
model_fn=get_self_supervision_model(FLAGS.task),
model_dir=checkpoint_dir,
config=config,
use_tpu=FLAGS.use_tpu,
train_batch_size=FLAGS.batch_size,
eval_batch_size=FLAGS.get_flag_value('eval_batch_size', FLAGS.batch_size))
if FLAGS.run_eval:
data_fn = functools.partial(
datasets.get_data,
split_name=FLAGS.get_flag_value('val_split', 'val'),
is_training=False,
shuffle=False,
num_epochs=1,
drop_remainder=FLAGS.use_tpu)
# Contrary to what the documentation claims, the `train` and the
# `evaluate` functions NEED to have `max_steps` and/or `steps` set and
# cannot make use of the iterator's end-of-input exception, so we need
# to do some math for that here.
num_samples = datasets.get_count(FLAGS.get_flag_value('val_split', 'val'))
num_steps = num_samples // FLAGS.get_flag_value('eval_batch_size',
FLAGS.batch_size)
tf.logging.info('val_steps: %d', num_steps)
for checkpoint in tf.contrib.training.checkpoints_iterator(
estimator.model_dir, timeout=10 * 60):
estimator.evaluate(
checkpoint_path=checkpoint, input_fn=data_fn, steps=num_steps)
hub_exporter = hub.LatestModuleExporter('hub', serving_input_fn)
hub_exporter.export(
estimator,
os.path.join(checkpoint_dir, 'export/hub'),
checkpoint)
if tf.gfile.Exists(os.path.join(FLAGS.workdir, 'TRAINING_IS_DONE')):
break
# Evaluates the latest checkpoint on validation set.
result = estimator.evaluate(input_fn=data_fn, steps=num_steps)
return result
else:
train_data_fn = functools.partial(
datasets.get_data,
split_name=FLAGS.get_flag_value('train_split', 'train'),
is_training=True,
num_epochs=int(math.ceil(FLAGS.epochs)),
drop_remainder=True)
# We compute the number of steps and make use of Estimator's max_steps
# arguments instead of relying on the Dataset's iterator to run out after
# a number of epochs so that we can use 'fractional' epochs, which are
# used by regression tests. (And because TPUEstimator needs it anyways.)
num_samples = datasets.get_count(FLAGS.get_flag_value('train_split',
'train'))
# Depending on whether we drop the last batch each epoch or only at the
# ver end, this should be ordered differently for rounding.
updates_per_epoch = num_samples // FLAGS.batch_size
num_steps = int(math.ceil(FLAGS.epochs * updates_per_epoch))
tf.logging.info('train_steps: %d', num_steps)
estimator.train(train_data_fn, max_steps=num_steps)
def serving_input_fn():
"""A serving input fn."""
input_shape = utils.str2intlist(
FLAGS.get_flag_value('serving_input_shape', 'None,None,None,3'))
image_features = {
FLAGS.get_flag_value('serving_input_key', 'image'):
tf.placeholder(dtype=tf.float32, shape=input_shape)}
return tf.estimator.export.ServingInputReceiver(
features=image_features, receiver_tensors=image_features)
def main(unused_argv):
# logging.info('config: %s', FLAGS)
logging.info('workdir: %s', FLAGS.workdir)
train_and_eval()
logging.info('I\'m done with my work, ciao!')
if __name__ == '__main__':
app.run(main)