-
Notifications
You must be signed in to change notification settings - Fork 15.6k
/
Copy patharith.js
413 lines (364 loc) · 11.7 KB
/
arith.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc. All rights reserved.
// https://developers.google.com/protocol-buffers/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
/**
* @fileoverview This file contains helper code used by jspb.utils to
* handle 64-bit integer conversion to/from strings.
*
* @author [email protected] (Chris Fallin)
*
* TODO(haberman): move this to javascript/closure/math?
*/
goog.provide('jspb.arith.Int64');
goog.provide('jspb.arith.UInt64');
/**
* UInt64 implements some 64-bit arithmetic routines necessary for properly
* handling 64-bit integer fields. It implements lossless integer arithmetic on
* top of JavaScript's number type, which has only 53 bits of precision, by
* representing 64-bit integers as two 32-bit halves.
*
* @param {number} lo The low 32 bits.
* @param {number} hi The high 32 bits.
* @constructor
*/
jspb.arith.UInt64 = function(lo, hi) {
/**
* The low 32 bits.
* @public {number}
*/
this.lo = lo;
/**
* The high 32 bits.
* @public {number}
*/
this.hi = hi;
};
/**
* Compare two 64-bit numbers. Returns -1 if the first is
* less, +1 if the first is greater, or 0 if both are equal.
* @param {!jspb.arith.UInt64} other
* @return {number}
*/
jspb.arith.UInt64.prototype.cmp = function(other) {
if (this.hi < other.hi || (this.hi == other.hi && this.lo < other.lo)) {
return -1;
} else if (this.hi == other.hi && this.lo == other.lo) {
return 0;
} else {
return 1;
}
};
/**
* Right-shift this number by one bit.
* @return {!jspb.arith.UInt64}
*/
jspb.arith.UInt64.prototype.rightShift = function() {
var hi = this.hi >>> 1;
var lo = (this.lo >>> 1) | ((this.hi & 1) << 31);
return new jspb.arith.UInt64(lo >>> 0, hi >>> 0);
};
/**
* Left-shift this number by one bit.
* @return {!jspb.arith.UInt64}
*/
jspb.arith.UInt64.prototype.leftShift = function() {
var lo = this.lo << 1;
var hi = (this.hi << 1) | (this.lo >>> 31);
return new jspb.arith.UInt64(lo >>> 0, hi >>> 0);
};
/**
* Test the MSB.
* @return {boolean}
*/
jspb.arith.UInt64.prototype.msb = function() {
return !!(this.hi & 0x80000000);
};
/**
* Test the LSB.
* @return {boolean}
*/
jspb.arith.UInt64.prototype.lsb = function() {
return !!(this.lo & 1);
};
/**
* Test whether this number is zero.
* @return {boolean}
*/
jspb.arith.UInt64.prototype.zero = function() {
return this.lo == 0 && this.hi == 0;
};
/**
* Add two 64-bit numbers to produce a 64-bit number.
* @param {!jspb.arith.UInt64} other
* @return {!jspb.arith.UInt64}
*/
jspb.arith.UInt64.prototype.add = function(other) {
var lo = ((this.lo + other.lo) & 0xffffffff) >>> 0;
var hi =
(((this.hi + other.hi) & 0xffffffff) >>> 0) +
(((this.lo + other.lo) >= 0x100000000) ? 1 : 0);
return new jspb.arith.UInt64(lo >>> 0, hi >>> 0);
};
/**
* Subtract two 64-bit numbers to produce a 64-bit number.
* @param {!jspb.arith.UInt64} other
* @return {!jspb.arith.UInt64}
*/
jspb.arith.UInt64.prototype.sub = function(other) {
var lo = ((this.lo - other.lo) & 0xffffffff) >>> 0;
var hi =
(((this.hi - other.hi) & 0xffffffff) >>> 0) -
(((this.lo - other.lo) < 0) ? 1 : 0);
return new jspb.arith.UInt64(lo >>> 0, hi >>> 0);
};
/**
* Multiply two 32-bit numbers to produce a 64-bit number.
* @param {number} a The first integer: must be in [0, 2^32-1).
* @param {number} b The second integer: must be in [0, 2^32-1).
* @return {!jspb.arith.UInt64}
*/
jspb.arith.UInt64.mul32x32 = function(a, b) {
// Directly multiplying two 32-bit numbers may produce up to 64 bits of
// precision, thus losing precision because of the 53-bit mantissa of
// JavaScript numbers. So we multiply with 16-bit digits (radix 65536)
// instead.
var aLow = (a & 0xffff);
var aHigh = (a >>> 16);
var bLow = (b & 0xffff);
var bHigh = (b >>> 16);
var productLow =
// 32-bit result, result bits 0-31, take all 32 bits
(aLow * bLow) +
// 32-bit result, result bits 16-47, take bottom 16 as our top 16
((aLow * bHigh) & 0xffff) * 0x10000 +
// 32-bit result, result bits 16-47, take bottom 16 as our top 16
((aHigh * bLow) & 0xffff) * 0x10000;
var productHigh =
// 32-bit result, result bits 32-63, take all 32 bits
(aHigh * bHigh) +
// 32-bit result, result bits 16-47, take top 16 as our bottom 16
((aLow * bHigh) >>> 16) +
// 32-bit result, result bits 16-47, take top 16 as our bottom 16
((aHigh * bLow) >>> 16);
// Carry. Note that we actually have up to *two* carries due to addition of
// three terms.
while (productLow >= 0x100000000) {
productLow -= 0x100000000;
productHigh += 1;
}
return new jspb.arith.UInt64(productLow >>> 0, productHigh >>> 0);
};
/**
* Multiply this number by a 32-bit number, producing a 96-bit number, then
* truncate the top 32 bits.
* @param {number} a The multiplier.
* @return {!jspb.arith.UInt64}
*/
jspb.arith.UInt64.prototype.mul = function(a) {
// Produce two parts: at bits 0-63, and 32-95.
var lo = jspb.arith.UInt64.mul32x32(this.lo, a);
var hi = jspb.arith.UInt64.mul32x32(this.hi, a);
// Left-shift hi by 32 bits, truncating its top bits. The parts will then be
// aligned for addition.
hi.hi = hi.lo;
hi.lo = 0;
return lo.add(hi);
};
/**
* Divide a 64-bit number by a 32-bit number to produce a
* 64-bit quotient and a 32-bit remainder.
* @param {number} _divisor
* @return {Array<jspb.arith.UInt64>} array of [quotient, remainder],
* unless divisor is 0, in which case an empty array is returned.
*/
jspb.arith.UInt64.prototype.div = function(_divisor) {
if (_divisor == 0) {
return [];
}
// We perform long division using a radix-2 algorithm, for simplicity (i.e.,
// one bit at a time). TODO: optimize to a radix-2^32 algorithm, taking care
// to get the variable shifts right.
var quotient = new jspb.arith.UInt64(0, 0);
var remainder = new jspb.arith.UInt64(this.lo, this.hi);
var divisor = new jspb.arith.UInt64(_divisor, 0);
var unit = new jspb.arith.UInt64(1, 0);
// Left-shift the divisor and unit until the high bit of divisor is set.
while (!divisor.msb()) {
divisor = divisor.leftShift();
unit = unit.leftShift();
}
// Perform long division one bit at a time.
while (!unit.zero()) {
// If divisor < remainder, add unit to quotient and subtract divisor from
// remainder.
if (divisor.cmp(remainder) <= 0) {
quotient = quotient.add(unit);
remainder = remainder.sub(divisor);
}
// Right-shift the divisor and unit.
divisor = divisor.rightShift();
unit = unit.rightShift();
}
return [quotient, remainder];
};
/**
* Convert a 64-bit number to a string.
* @return {string}
* @override
*/
jspb.arith.UInt64.prototype.toString = function() {
var result = '';
var num = this;
while (!num.zero()) {
var divResult = num.div(10);
var quotient = divResult[0], remainder = divResult[1];
result = remainder.lo + result;
num = quotient;
}
if (result == '') {
result = '0';
}
return result;
};
/**
* Parse a string into a 64-bit number. Returns `null` on a parse error.
* @param {string} s
* @return {?jspb.arith.UInt64}
*/
jspb.arith.UInt64.fromString = function(s) {
var result = new jspb.arith.UInt64(0, 0);
// optimization: reuse this instance for each digit.
var digit64 = new jspb.arith.UInt64(0, 0);
for (var i = 0; i < s.length; i++) {
if (s[i] < '0' || s[i] > '9') {
return null;
}
var digit = parseInt(s[i], 10);
digit64.lo = digit;
result = result.mul(10).add(digit64);
}
return result;
};
/**
* Make a copy of the uint64.
* @return {!jspb.arith.UInt64}
*/
jspb.arith.UInt64.prototype.clone = function() {
return new jspb.arith.UInt64(this.lo, this.hi);
};
/**
* Int64 is like UInt64, but modifies string conversions to interpret the stored
* 64-bit value as a twos-complement-signed integer. It does *not* support the
* full range of operations that UInt64 does: only add, subtract, and string
* conversions.
*
* N.B. that multiply and divide routines are *NOT* supported. They will throw
* exceptions. (They are not necessary to implement string conversions, which
* are the only operations we really need in jspb.)
*
* @param {number} lo The low 32 bits.
* @param {number} hi The high 32 bits.
* @constructor
*/
jspb.arith.Int64 = function(lo, hi) {
/**
* The low 32 bits.
* @public {number}
*/
this.lo = lo;
/**
* The high 32 bits.
* @public {number}
*/
this.hi = hi;
};
/**
* Add two 64-bit numbers to produce a 64-bit number.
* @param {!jspb.arith.Int64} other
* @return {!jspb.arith.Int64}
*/
jspb.arith.Int64.prototype.add = function(other) {
var lo = ((this.lo + other.lo) & 0xffffffff) >>> 0;
var hi =
(((this.hi + other.hi) & 0xffffffff) >>> 0) +
(((this.lo + other.lo) >= 0x100000000) ? 1 : 0);
return new jspb.arith.Int64(lo >>> 0, hi >>> 0);
};
/**
* Subtract two 64-bit numbers to produce a 64-bit number.
* @param {!jspb.arith.Int64} other
* @return {!jspb.arith.Int64}
*/
jspb.arith.Int64.prototype.sub = function(other) {
var lo = ((this.lo - other.lo) & 0xffffffff) >>> 0;
var hi =
(((this.hi - other.hi) & 0xffffffff) >>> 0) -
(((this.lo - other.lo) < 0) ? 1 : 0);
return new jspb.arith.Int64(lo >>> 0, hi >>> 0);
};
/**
* Make a copy of the int64.
* @return {!jspb.arith.Int64}
*/
jspb.arith.Int64.prototype.clone = function() {
return new jspb.arith.Int64(this.lo, this.hi);
};
/**
* Convert a 64-bit number to a string.
* @return {string}
* @override
*/
jspb.arith.Int64.prototype.toString = function() {
// If the number is negative, find its twos-complement inverse.
var sign = (this.hi & 0x80000000) != 0;
var num = new jspb.arith.UInt64(this.lo, this.hi);
if (sign) {
num = new jspb.arith.UInt64(0, 0).sub(num);
}
return (sign ? '-' : '') + num.toString();
};
/**
* Parse a string into a 64-bit number. Returns `null` on a parse error.
* @param {string} s
* @return {?jspb.arith.Int64}
*/
jspb.arith.Int64.fromString = function(s) {
var hasNegative = (s.length > 0 && s[0] == '-');
if (hasNegative) {
s = s.substring(1);
}
var num = jspb.arith.UInt64.fromString(s);
if (num === null) {
return null;
}
if (hasNegative) {
num = new jspb.arith.UInt64(0, 0).sub(num);
}
return new jspb.arith.Int64(num.lo, num.hi);
};