-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
Copy pathpcap.go
876 lines (770 loc) · 25.7 KB
/
pcap.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
// Copyright 2012 Google, Inc. All rights reserved.
// Copyright 2009-2011 Andreas Krennmair. All rights reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the LICENSE file in the root of the source
// tree.
package pcap
import (
"errors"
"fmt"
"io"
"net"
"os"
"reflect"
"runtime"
"strconv"
"sync"
"sync/atomic"
"syscall"
"time"
"unsafe"
"github.com/google/gopacket"
"github.com/google/gopacket/layers"
)
// ErrNotActive is returned if handle is not activated
const ErrNotActive = pcapErrorNotActivated
// MaxBpfInstructions is the maximum number of BPF instructions supported (BPF_MAXINSNS),
// taken from Linux kernel: include/uapi/linux/bpf_common.h
//
// https://github.com/torvalds/linux/blob/master/include/uapi/linux/bpf_common.h
const MaxBpfInstructions = 4096
// 8 bytes per instruction, max 4096 instructions
const bpfInstructionBufferSize = 8 * MaxBpfInstructions
// Handle provides a connection to a pcap handle, allowing users to read packets
// off the wire (Next), inject packets onto the wire (Inject), and
// perform a number of other functions to affect and understand packet output.
//
// Handles are already pcap_activate'd
type Handle struct {
// stop is set to a non-zero value by Handle.Close to signal to
// getNextBufPtrLocked to stop trying to read packets
// This must be the first entry to ensure alignment for sync.atomic
stop uint64
// cptr is the handle for the actual pcap C object.
cptr pcapTPtr
timeout time.Duration
device string
deviceIndex int
mu sync.Mutex
closeMu sync.Mutex
nanoSecsFactor int64
// Since pointers to these objects are passed into a C function, if
// they're declared locally then the Go compiler thinks they may have
// escaped into C-land, so it allocates them on the heap. This causes a
// huge memory hit, so to handle that we store them here instead.
pkthdr *pcapPkthdr
bufptr *uint8
}
// Stats contains statistics on how many packets were handled by a pcap handle,
// and what was done with those packets.
type Stats struct {
PacketsReceived int
PacketsDropped int
PacketsIfDropped int
}
// Interface describes a single network interface on a machine.
type Interface struct {
Name string
Description string
Flags uint32
Addresses []InterfaceAddress
}
// Datalink describes the datalink
type Datalink struct {
Name string
Description string
}
// InterfaceAddress describes an address associated with an Interface.
// Currently, it's IPv4/6 specific.
type InterfaceAddress struct {
IP net.IP
Netmask net.IPMask // Netmask may be nil if we were unable to retrieve it.
Broadaddr net.IP // Broadcast address for this IP may be nil
P2P net.IP // P2P destination address for this IP may be nil
}
// bpfFilter keeps C.struct_bpf_program separate from BPF.orig which might be a pointer to go memory.
// This is a workaround for https://github.com/golang/go/issues/32970 which will be fixed in go1.14.
// (type conversion is in pcap_unix.go pcapOfflineFilter)
type bpfFilter struct {
bpf pcapBpfProgram // takes a finalizer, not overriden by outsiders
}
// BPF is a compiled filter program, useful for offline packet matching.
type BPF struct {
orig string
bpf *bpfFilter
hdr pcapPkthdr // allocate on the heap to enable optimizations
}
// BPFInstruction is a byte encoded structure holding a BPF instruction
type BPFInstruction struct {
Code uint16
Jt uint8
Jf uint8
K uint32
}
// BlockForever causes it to block forever waiting for packets, when passed
// into SetTimeout or OpenLive, while still returning incoming packets to userland relatively
// quickly.
const BlockForever = -time.Millisecond * 10
func timeoutMillis(timeout time.Duration) int {
// Flip sign if necessary. See package docs on timeout for reasoning behind this.
if timeout < 0 {
timeout *= -1
}
// Round up
if timeout != 0 && timeout < time.Millisecond {
timeout = time.Millisecond
}
return int(timeout / time.Millisecond)
}
// OpenLive opens a device and returns a *Handle.
// It takes as arguments the name of the device ("eth0"), the maximum size to
// read for each packet (snaplen), whether to put the interface in promiscuous
// mode, and a timeout. Warning: this function supports only microsecond timestamps.
// For nanosecond resolution use an InactiveHandle.
//
// See the package documentation for important details regarding 'timeout'.
func OpenLive(device string, snaplen int32, promisc bool, timeout time.Duration) (handle *Handle, _ error) {
var pro int
if promisc {
pro = 1
}
p, err := pcapOpenLive(device, int(snaplen), pro, timeoutMillis(timeout))
if err != nil {
return nil, err
}
p.timeout = timeout
p.device = device
ifc, err := net.InterfaceByName(device)
if err != nil {
// The device wasn't found in the OS, but could be "any"
// Set index to 0
p.deviceIndex = 0
} else {
p.deviceIndex = ifc.Index
}
p.nanoSecsFactor = 1000
// Only set the PCAP handle into non-blocking mode if we have a timeout
// greater than zero. If the user wants to block forever, we'll let libpcap
// handle that.
if p.timeout > 0 {
if err := p.setNonBlocking(); err != nil {
p.pcapClose()
return nil, err
}
}
return p, nil
}
// OpenOffline opens a file and returns its contents as a *Handle. Depending on libpcap support and
// on the timestamp resolution used in the file, nanosecond or microsecond resolution is used
// internally. All returned timestamps are scaled to nanosecond resolution. Resolution() can be used
// to query the actual resolution used.
func OpenOffline(file string) (handle *Handle, err error) {
handle, err = openOffline(file)
if err != nil {
return
}
if pcapGetTstampPrecision(handle.cptr) == pcapTstampPrecisionNano {
handle.nanoSecsFactor = 1
} else {
handle.nanoSecsFactor = 1000
}
return
}
// OpenOfflineFile returns contents of input file as a *Handle. Depending on libpcap support and
// on the timestamp resolution used in the file, nanosecond or microsecond resolution is used
// internally. All returned timestamps are scaled to nanosecond resolution. Resolution() can be used
// to query the actual resolution used.
func OpenOfflineFile(file *os.File) (handle *Handle, err error) {
handle, err = openOfflineFile(file)
if err != nil {
return
}
if pcapGetTstampPrecision(handle.cptr) == pcapTstampPrecisionNano {
handle.nanoSecsFactor = 1
} else {
handle.nanoSecsFactor = 1000
}
return
}
// NextError is the return code from a call to Next.
type NextError int32
// NextError implements the error interface.
func (n NextError) Error() string {
switch n {
case NextErrorOk:
return "OK"
case NextErrorTimeoutExpired:
return "Timeout Expired"
case NextErrorReadError:
return "Read Error"
case NextErrorNoMorePackets:
return "No More Packets In File"
case NextErrorNotActivated:
return "Not Activated"
}
return strconv.Itoa(int(n))
}
// NextError values.
const (
NextErrorOk NextError = 1
NextErrorTimeoutExpired NextError = 0
NextErrorReadError NextError = -1
// NextErrorNoMorePackets is returned when reading from a file (OpenOffline) and
// EOF is reached. When this happens, Next() returns io.EOF instead of this.
NextErrorNoMorePackets NextError = -2
NextErrorNotActivated NextError = -3
)
// ReadPacketData returns the next packet read from the pcap handle, along with an error
// code associated with that packet. If the packet is read successfully, the
// returned error is nil.
func (p *Handle) ReadPacketData() (data []byte, ci gopacket.CaptureInfo, err error) {
p.mu.Lock()
err = p.getNextBufPtrLocked(&ci)
if err == nil {
data = make([]byte, ci.CaptureLength)
copy(data, (*(*[1 << 30]byte)(unsafe.Pointer(p.bufptr)))[:])
}
p.mu.Unlock()
if err == NextErrorTimeoutExpired {
runtime.Gosched()
}
return
}
type activateError int
const (
aeNoError = activateError(0)
aeActivated = activateError(pcapErrorActivated)
aePromisc = activateError(pcapWarningPromisc)
aeNoSuchDevice = activateError(pcapErrorNoSuchDevice)
aeDenied = activateError(pcapErrorDenied)
aeNotUp = activateError(pcapErrorNotUp)
aeWarning = activateError(pcapWarning)
aeError = activateError(pcapError)
)
func (a activateError) Error() string {
switch a {
case aeNoError:
return "No Error"
case aeActivated:
return "Already Activated"
case aePromisc:
return "Cannot set as promisc"
case aeNoSuchDevice:
return "No Such Device"
case aeDenied:
return "Permission Denied"
case aeNotUp:
return "Interface Not Up"
case aeWarning:
return fmt.Sprintf("Warning: %v", activateErrMsg.Error())
case aeError:
return fmt.Sprintf("Error: %v", activateErrMsg.Error())
default:
return fmt.Sprintf("unknown activated error: %d", a)
}
}
// getNextBufPtrLocked is shared code for ReadPacketData and
// ZeroCopyReadPacketData.
func (p *Handle) getNextBufPtrLocked(ci *gopacket.CaptureInfo) error {
if !p.isOpen() {
return io.EOF
}
// set after we have call waitForPacket for the first time
var waited bool
for atomic.LoadUint64(&p.stop) == 0 {
// try to read a packet if one is immediately available
result := p.pcapNextPacketEx()
switch result {
case NextErrorOk:
sec := p.pkthdr.getSec()
// convert micros to nanos
nanos := int64(p.pkthdr.getUsec()) * p.nanoSecsFactor
ci.Timestamp = time.Unix(sec, nanos)
ci.CaptureLength = p.pkthdr.getCaplen()
ci.Length = p.pkthdr.getLen()
ci.InterfaceIndex = p.deviceIndex
return nil
case NextErrorNoMorePackets:
// no more packets, return EOF rather than libpcap-specific error
return io.EOF
case NextErrorTimeoutExpired:
// we've already waited for a packet and we're supposed to time out
//
// we should never actually hit this if we were passed BlockForever
// since we should block on C.pcap_next_ex until there's a packet
// to read.
if waited && p.timeout > 0 {
return result
}
// wait for packet before trying again
p.waitForPacket()
waited = true
default:
return result
}
}
// stop must be set
return io.EOF
}
// ZeroCopyReadPacketData reads the next packet off the wire, and returns its data.
// The slice returned by ZeroCopyReadPacketData points to bytes owned by the
// the Handle. Each call to ZeroCopyReadPacketData invalidates any data previously
// returned by ZeroCopyReadPacketData. Care must be taken not to keep pointers
// to old bytes when using ZeroCopyReadPacketData... if you need to keep data past
// the next time you call ZeroCopyReadPacketData, use ReadPacketData, which copies
// the bytes into a new buffer for you.
// data1, _, _ := handle.ZeroCopyReadPacketData()
// // do everything you want with data1 here, copying bytes out of it if you'd like to keep them around.
// data2, _, _ := handle.ZeroCopyReadPacketData() // invalidates bytes in data1
func (p *Handle) ZeroCopyReadPacketData() (data []byte, ci gopacket.CaptureInfo, err error) {
p.mu.Lock()
err = p.getNextBufPtrLocked(&ci)
if err == nil {
slice := (*reflect.SliceHeader)(unsafe.Pointer(&data))
slice.Data = uintptr(unsafe.Pointer(p.bufptr))
slice.Len = ci.CaptureLength
slice.Cap = ci.CaptureLength
}
p.mu.Unlock()
if err == NextErrorTimeoutExpired {
runtime.Gosched()
}
return
}
// Close closes the underlying pcap handle.
func (p *Handle) Close() {
p.closeMu.Lock()
defer p.closeMu.Unlock()
if !p.isOpen() {
return
}
atomic.StoreUint64(&p.stop, 1)
// wait for packet reader to stop
p.mu.Lock()
defer p.mu.Unlock()
p.pcapClose()
}
// Error returns the current error associated with a pcap handle (pcap_geterr).
func (p *Handle) Error() error {
return p.pcapGeterr()
}
// Stats returns statistics on the underlying pcap handle.
func (p *Handle) Stats() (stat *Stats, err error) {
return p.pcapStats()
}
// ListDataLinks obtains a list of all possible data link types supported for an interface.
func (p *Handle) ListDataLinks() (datalinks []Datalink, err error) {
return p.pcapListDatalinks()
}
// compileBPFFilter always returns an allocated C.struct_bpf_program
// It is the callers responsibility to free the memory again, e.g.
//
// C.pcap_freecode(&bpf)
//
func (p *Handle) compileBPFFilter(expr string) (pcapBpfProgram, error) {
var maskp = uint32(pcapNetmaskUnknown)
// Only do the lookup on network interfaces.
// No device indicates we're handling a pcap file.
if len(p.device) > 0 {
var err error
_, maskp, err = pcapLookupnet(p.device)
if err != nil {
// We can't lookup the network, but that could be because the interface
// doesn't have an IPv4.
maskp = uint32(pcapNetmaskUnknown)
}
}
return p.pcapCompile(expr, maskp)
}
// CompileBPFFilter compiles and returns a BPF filter with given a link type and capture length.
func CompileBPFFilter(linkType layers.LinkType, captureLength int, expr string) ([]BPFInstruction, error) {
h, err := pcapOpenDead(linkType, captureLength)
if err != nil {
return nil, err
}
defer h.Close()
return h.CompileBPFFilter(expr)
}
// CompileBPFFilter compiles and returns a BPF filter for the pcap handle.
func (p *Handle) CompileBPFFilter(expr string) ([]BPFInstruction, error) {
bpf, err := p.compileBPFFilter(expr)
defer bpf.free()
if err != nil {
return nil, err
}
return bpf.toBPFInstruction(), nil
}
// SetBPFFilter compiles and sets a BPF filter for the pcap handle.
func (p *Handle) SetBPFFilter(expr string) (err error) {
bpf, err := p.compileBPFFilter(expr)
defer bpf.free()
if err != nil {
return err
}
return p.pcapSetfilter(bpf)
}
// SetBPFInstructionFilter may be used to apply a filter in BPF asm byte code format.
//
// Simplest way to generate BPF asm byte code is with tcpdump:
// tcpdump -dd 'udp'
//
// The output may be used directly to add a filter, e.g.:
// bpfInstructions := []pcap.BpfInstruction{
// {0x28, 0, 0, 0x0000000c},
// {0x15, 0, 9, 0x00000800},
// {0x30, 0, 0, 0x00000017},
// {0x15, 0, 7, 0x00000006},
// {0x28, 0, 0, 0x00000014},
// {0x45, 5, 0, 0x00001fff},
// {0xb1, 0, 0, 0x0000000e},
// {0x50, 0, 0, 0x0000001b},
// {0x54, 0, 0, 0x00000012},
// {0x15, 0, 1, 0x00000012},
// {0x6, 0, 0, 0x0000ffff},
// {0x6, 0, 0, 0x00000000},
// }
//
// An other posibility is to write the bpf code in bpf asm.
// Documentation: https://www.kernel.org/doc/Documentation/networking/filter.txt
//
// To compile the code use bpf_asm from
// https://github.com/torvalds/linux/tree/master/tools/net
//
// The following command may be used to convert bpf_asm output to c/go struct, usable for SetBPFFilterByte:
// bpf_asm -c tcp.bpf
func (p *Handle) SetBPFInstructionFilter(bpfInstructions []BPFInstruction) (err error) {
bpf, err := bpfInstructionFilter(bpfInstructions)
if err != nil {
return err
}
defer bpf.free()
return p.pcapSetfilter(bpf)
}
func bpfInstructionFilter(bpfInstructions []BPFInstruction) (bpf pcapBpfProgram, err error) {
if len(bpfInstructions) < 1 {
return bpf, errors.New("bpfInstructions must not be empty")
}
if len(bpfInstructions) > MaxBpfInstructions {
return bpf, fmt.Errorf("bpfInstructions must not be larger than %d", MaxBpfInstructions)
}
return pcapBpfProgramFromInstructions(bpfInstructions), nil
}
// NewBPF compiles the given string into a new filter program.
//
// BPF filters need to be created from activated handles, because they need to
// know the underlying link type to correctly compile their offsets.
func (p *Handle) NewBPF(expr string) (*BPF, error) {
bpf := &BPF{orig: expr, bpf: new(bpfFilter)}
var err error
bpf.bpf.bpf, err = p.pcapCompile(expr, pcapNetmaskUnknown)
if err != nil {
return nil, err
}
runtime.SetFinalizer(bpf, destroyBPF)
return bpf, nil
}
// NewBPF allows to create a BPF without requiring an existing handle.
// This allows to match packets obtained from a-non GoPacket capture source
// to be matched.
//
// buf := make([]byte, MaxFrameSize)
// bpfi, _ := pcap.NewBPF(layers.LinkTypeEthernet, MaxFrameSize, "icmp")
// n, _ := someIO.Read(buf)
// ci := gopacket.CaptureInfo{CaptureLength: n, Length: n}
// if bpfi.Matches(ci, buf) {
// doSomething()
// }
func NewBPF(linkType layers.LinkType, captureLength int, expr string) (*BPF, error) {
h, err := pcapOpenDead(linkType, captureLength)
if err != nil {
return nil, err
}
defer h.Close()
return h.NewBPF(expr)
}
// NewBPFInstructionFilter sets the given BPFInstructions as new filter program.
//
// More details see func SetBPFInstructionFilter
//
// BPF filters need to be created from activated handles, because they need to
// know the underlying link type to correctly compile their offsets.
func (p *Handle) NewBPFInstructionFilter(bpfInstructions []BPFInstruction) (*BPF, error) {
var err error
bpf := &BPF{orig: "BPF Instruction Filter", bpf: new(bpfFilter)}
bpf.bpf.bpf, err = bpfInstructionFilter(bpfInstructions)
if err != nil {
return nil, err
}
runtime.SetFinalizer(bpf, destroyBPF)
return bpf, nil
}
func destroyBPF(bpf *BPF) {
bpf.bpf.bpf.free()
}
// String returns the original string this BPF filter was compiled from.
func (b *BPF) String() string {
return b.orig
}
// Matches returns true if the given packet data matches this filter.
func (b *BPF) Matches(ci gopacket.CaptureInfo, data []byte) bool {
return b.pcapOfflineFilter(ci, data)
}
// Version returns pcap_lib_version.
func Version() string {
return pcapLibVersion()
}
// LinkType returns pcap_datalink, as a layers.LinkType.
func (p *Handle) LinkType() layers.LinkType {
return p.pcapDatalink()
}
// SetLinkType calls pcap_set_datalink on the pcap handle.
func (p *Handle) SetLinkType(dlt layers.LinkType) error {
return p.pcapSetDatalink(dlt)
}
// DatalinkValToName returns pcap_datalink_val_to_name as string
func DatalinkValToName(dlt int) string {
return pcapDatalinkValToName(dlt)
}
// DatalinkValToDescription returns pcap_datalink_val_to_description as string
func DatalinkValToDescription(dlt int) string {
return pcapDatalinkValToDescription(dlt)
}
// DatalinkNameToVal returns pcap_datalink_name_to_val as int
func DatalinkNameToVal(name string) int {
return pcapDatalinkNameToVal(name)
}
// FindAllDevs attempts to enumerate all interfaces on the current machine.
func FindAllDevs() (ifs []Interface, err error) {
alldevsp, err := pcapFindAllDevs()
if err != nil {
return nil, err
}
defer alldevsp.free()
for alldevsp.next() {
var iface Interface
iface.Name = alldevsp.name()
iface.Description = alldevsp.description()
iface.Addresses = findalladdresses(alldevsp.addresses())
iface.Flags = alldevsp.flags()
ifs = append(ifs, iface)
}
return
}
func findalladdresses(addresses pcapAddresses) (retval []InterfaceAddress) {
// TODO - make it support more than IPv4 and IPv6?
retval = make([]InterfaceAddress, 0, 1)
for addresses.next() {
// Strangely, it appears that in some cases, we get a pcap address back from
// pcap_findalldevs with a nil .addr. It appears that we can skip over
// these.
if addresses.addr() == nil {
continue
}
var a InterfaceAddress
var err error
if a.IP, err = sockaddrToIP(addresses.addr()); err != nil {
continue
}
// To be safe, we'll also check for netmask.
if addresses.netmask() == nil {
continue
}
if a.Netmask, err = sockaddrToIP(addresses.netmask()); err != nil {
// If we got an IP address but we can't get a netmask, just return the IP
// address.
a.Netmask = nil
}
if a.Broadaddr, err = sockaddrToIP(addresses.broadaddr()); err != nil {
a.Broadaddr = nil
}
if a.P2P, err = sockaddrToIP(addresses.dstaddr()); err != nil {
a.P2P = nil
}
retval = append(retval, a)
}
return
}
func sockaddrToIP(rsa *syscall.RawSockaddr) (IP []byte, err error) {
if rsa == nil {
err = errors.New("Value not set")
return
}
switch rsa.Family {
case syscall.AF_INET:
pp := (*syscall.RawSockaddrInet4)(unsafe.Pointer(rsa))
IP = make([]byte, 4)
for i := 0; i < len(IP); i++ {
IP[i] = pp.Addr[i]
}
return
case syscall.AF_INET6:
pp := (*syscall.RawSockaddrInet6)(unsafe.Pointer(rsa))
IP = make([]byte, 16)
for i := 0; i < len(IP); i++ {
IP[i] = pp.Addr[i]
}
return
}
err = errors.New("Unsupported address type")
return
}
// WritePacketData calls pcap_sendpacket, injecting the given data into the pcap handle.
func (p *Handle) WritePacketData(data []byte) (err error) {
return p.pcapSendpacket(data)
}
// Direction is used by Handle.SetDirection.
type Direction uint8
// Direction values for Handle.SetDirection.
const (
DirectionIn = Direction(pcapDIN)
DirectionOut = Direction(pcapDOUT)
DirectionInOut = Direction(pcapDINOUT)
)
// SetDirection sets the direction for which packets will be captured.
func (p *Handle) SetDirection(direction Direction) error {
if direction != DirectionIn && direction != DirectionOut && direction != DirectionInOut {
return fmt.Errorf("Invalid direction: %v", direction)
}
return p.pcapSetdirection(direction)
}
// SnapLen returns the snapshot length
func (p *Handle) SnapLen() int {
return p.pcapSnapshot()
}
// Resolution returns the timestamp resolution of acquired timestamps before scaling to NanosecondTimestampResolution.
func (p *Handle) Resolution() gopacket.TimestampResolution {
if p.nanoSecsFactor == 1 {
return gopacket.TimestampResolutionMicrosecond
}
return gopacket.TimestampResolutionNanosecond
}
// TimestampSource tells PCAP which type of timestamp to use for packets.
type TimestampSource int
// String returns the timestamp type as a human-readable string.
func (t TimestampSource) String() string {
return t.pcapTstampTypeValToName()
}
// TimestampSourceFromString translates a string into a timestamp type, case
// insensitive.
func TimestampSourceFromString(s string) (TimestampSource, error) {
return pcapTstampTypeNameToVal(s)
}
// InactiveHandle allows you to call pre-pcap_activate functions on your pcap
// handle to set it up just the way you'd like.
type InactiveHandle struct {
// cptr is the handle for the actual pcap C object.
cptr pcapTPtr
device string
deviceIndex int
timeout time.Duration
}
// holds the err messoge in case activation returned a Warning
var activateErrMsg error
// Error returns the current error associated with a pcap handle (pcap_geterr).
func (p *InactiveHandle) Error() error {
return p.pcapGeterr()
}
// Activate activates the handle. The current InactiveHandle becomes invalid
// and all future function calls on it will fail.
func (p *InactiveHandle) Activate() (*Handle, error) {
// ignore error with set_tstamp_precision, since the actual precision is queried later anyway
pcapSetTstampPrecision(p.cptr, pcapTstampPrecisionNano)
handle, err := p.pcapActivate()
if err != aeNoError {
if err == aeWarning || err == aeError {
activateErrMsg = p.Error()
}
return nil, err
}
handle.timeout = p.timeout
if p.timeout > 0 {
if err := handle.setNonBlocking(); err != nil {
handle.pcapClose()
return nil, err
}
}
handle.device = p.device
handle.deviceIndex = p.deviceIndex
if pcapGetTstampPrecision(handle.cptr) == pcapTstampPrecisionNano {
handle.nanoSecsFactor = 1
} else {
handle.nanoSecsFactor = 1000
}
return handle, nil
}
// CleanUp cleans up any stuff left over from a successful or failed building
// of a handle.
func (p *InactiveHandle) CleanUp() {
p.pcapClose()
}
// NewInactiveHandle creates a new InactiveHandle, which wraps an un-activated PCAP handle.
// Callers of NewInactiveHandle should immediately defer 'CleanUp', as in:
// inactive := NewInactiveHandle("eth0")
// defer inactive.CleanUp()
func NewInactiveHandle(device string) (*InactiveHandle, error) {
// Try to get the interface index, but iy could be something like "any"
// in which case use 0, which doesn't exist in nature
deviceIndex := 0
ifc, err := net.InterfaceByName(device)
if err == nil {
deviceIndex = ifc.Index
}
// This copies a bunch of the pcap_open_live implementation from pcap.c:
handle, err := pcapCreate(device)
if err != nil {
return nil, err
}
handle.device = device
handle.deviceIndex = deviceIndex
return handle, nil
}
// SetSnapLen sets the snap length (max bytes per packet to capture).
func (p *InactiveHandle) SetSnapLen(snaplen int) error {
return p.pcapSetSnaplen(snaplen)
}
// SetPromisc sets the handle to either be promiscuous (capture packets
// unrelated to this host) or not.
func (p *InactiveHandle) SetPromisc(promisc bool) error {
return p.pcapSetPromisc(promisc)
}
// SetTimeout sets the read timeout for the handle.
//
// See the package documentation for important details regarding 'timeout'.
func (p *InactiveHandle) SetTimeout(timeout time.Duration) error {
err := p.pcapSetTimeout(timeout)
if err != nil {
return err
}
p.timeout = timeout
return nil
}
// SupportedTimestamps returns a list of supported timstamp types for this
// handle.
func (p *InactiveHandle) SupportedTimestamps() (out []TimestampSource) {
return p.pcapListTstampTypes()
}
// SetTimestampSource sets the type of timestamp generator PCAP uses when
// attaching timestamps to packets.
func (p *InactiveHandle) SetTimestampSource(t TimestampSource) error {
return p.pcapSetTstampType(t)
}
// CannotSetRFMon is returned by SetRFMon if the handle does not allow
// setting RFMon because pcap_can_set_rfmon returns 0.
var CannotSetRFMon = errors.New("Cannot set rfmon for this handle")
// SetRFMon turns on radio monitoring mode, similar to promiscuous mode but for
// wireless networks. If this mode is enabled, the interface will not need to
// associate with an access point before it can receive traffic.
func (p *InactiveHandle) SetRFMon(monitor bool) error {
return p.pcapSetRfmon(monitor)
}
// SetBufferSize sets the buffer size (in bytes) of the handle.
func (p *InactiveHandle) SetBufferSize(bufferSize int) error {
return p.pcapSetBufferSize(bufferSize)
}
// SetImmediateMode sets (or unsets) the immediate mode of the
// handle. In immediate mode, packets are delivered to the application
// as soon as they arrive. In other words, this overrides SetTimeout.
func (p *InactiveHandle) SetImmediateMode(mode bool) error {
return p.pcapSetImmediateMode(mode)
}