-
Notifications
You must be signed in to change notification settings - Fork 233
/
Copy pathinterpretable.go
1204 lines (1050 loc) · 32.5 KB
/
interpretable.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright 2019 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package interpreter
import (
"math"
"github.com/google/cel-go/common/operators"
"github.com/google/cel-go/common/overloads"
"github.com/google/cel-go/common/types"
"github.com/google/cel-go/common/types/ref"
"github.com/google/cel-go/common/types/traits"
"github.com/google/cel-go/interpreter/functions"
)
// Interpretable can accept a given Activation and produce a value along with
// an accompanying EvalState which can be used to inspect whether additional
// data might be necessary to complete the evaluation.
type Interpretable interface {
// ID value corresponding to the expression node.
ID() int64
// Eval an Activation to produce an output.
Eval(activation Activation) ref.Val
}
// InterpretableConst interface for tracking whether the Interpretable is a constant value.
type InterpretableConst interface {
Interpretable
// Value returns the constant value of the instruction.
Value() ref.Val
}
// InterpretableAttribute interface for tracking whether the Interpretable is an attribute.
type InterpretableAttribute interface {
Interpretable
// Attr returns the Attribute value.
Attr() Attribute
// Adapter returns the type adapter to be used for adapting resolved Attribute values.
Adapter() ref.TypeAdapter
// AddQualifier proxies the Attribute.AddQualifier method.
//
// Note, this method may mutate the current attribute state. If the desire is to clone the
// Attribute, the Attribute should first be copied before adding the qualifier. Attributes
// are not copyable by default, so this is a capable that would need to be added to the
// AttributeFactory or specifically to the underlying Attribute implementation.
AddQualifier(Qualifier) (Attribute, error)
// Qualify replicates the Attribute.Qualify method to permit extension and interception
// of object qualification.
Qualify(vars Activation, obj interface{}) (interface{}, error)
// Resolve returns the value of the Attribute given the current Activation.
Resolve(Activation) (interface{}, error)
}
// InterpretableCall interface for inspecting Interpretable instructions related to function calls.
type InterpretableCall interface {
Interpretable
// Function returns the function name as it appears in text or mangled operator name as it
// appears in the operators.go file.
Function() string
// OverloadID returns the overload id associated with the function specialization.
// Overload ids are stable across language boundaries and can be treated as synonymous with a
// unique function signature.
OverloadID() string
// Args returns the normalized arguments to the function overload.
// For receiver-style functions, the receiver target is arg 0.
Args() []Interpretable
}
// Core Interpretable implementations used during the program planning phase.
type evalTestOnly struct {
id int64
op Interpretable
field types.String
fieldType *ref.FieldType
}
// ID implements the Interpretable interface method.
func (test *evalTestOnly) ID() int64 {
return test.id
}
// Eval implements the Interpretable interface method.
func (test *evalTestOnly) Eval(ctx Activation) ref.Val {
// Handle field selection on a proto in the most efficient way possible.
if test.fieldType != nil {
opAttr, ok := test.op.(InterpretableAttribute)
if ok {
opVal, err := opAttr.Resolve(ctx)
if err != nil {
return types.NewErr(err.Error())
}
refVal, ok := opVal.(ref.Val)
if ok {
opVal = refVal.Value()
}
if test.fieldType.IsSet(opVal) {
return types.True
}
return types.False
}
}
obj := test.op.Eval(ctx)
tester, ok := obj.(traits.FieldTester)
if ok {
return tester.IsSet(test.field)
}
container, ok := obj.(traits.Container)
if ok {
return container.Contains(test.field)
}
return types.ValOrErr(obj, "invalid type for field selection.")
}
// Cost provides the heuristic cost of a `has(field)` macro. The cost has at least 1 for determining
// if the field exists, apart from the cost of accessing the field.
func (test *evalTestOnly) Cost() (min, max int64) {
min, max = estimateCost(test.op)
min++
max++
return
}
// NewConstValue creates a new constant valued Interpretable.
func NewConstValue(id int64, val ref.Val) InterpretableConst {
return &evalConst{
id: id,
val: val,
}
}
type evalConst struct {
id int64
val ref.Val
}
// ID implements the Interpretable interface method.
func (cons *evalConst) ID() int64 {
return cons.id
}
// Eval implements the Interpretable interface method.
func (cons *evalConst) Eval(ctx Activation) ref.Val {
return cons.val
}
// Cost returns zero for a constant valued Interpretable.
func (cons *evalConst) Cost() (min, max int64) {
return 0, 0
}
// Value implements the InterpretableConst interface method.
func (cons *evalConst) Value() ref.Val {
return cons.val
}
type evalOr struct {
id int64
lhs Interpretable
rhs Interpretable
}
// ID implements the Interpretable interface method.
func (or *evalOr) ID() int64 {
return or.id
}
// Eval implements the Interpretable interface method.
func (or *evalOr) Eval(ctx Activation) ref.Val {
// short-circuit lhs.
lVal := or.lhs.Eval(ctx)
lBool, lok := lVal.(types.Bool)
if lok && lBool == types.True {
return types.True
}
// short-circuit on rhs.
rVal := or.rhs.Eval(ctx)
rBool, rok := rVal.(types.Bool)
if rok && rBool == types.True {
return types.True
}
// return if both sides are bool false.
if lok && rok {
return types.False
}
// TODO: return both values as a set if both are unknown or error.
// prefer left unknown to right unknown.
if types.IsUnknown(lVal) {
return lVal
}
if types.IsUnknown(rVal) {
return rVal
}
// If the left-hand side is non-boolean return it as the error.
if types.IsError(lVal) {
return lVal
}
return types.ValOrErr(rVal, "no such overload")
}
// Cost implements the Coster interface method. The minimum possible cost incurs when the left-hand
// side expr is sufficient in determining the evaluation result.
func (or *evalOr) Cost() (min, max int64) {
return calShortCircuitBinaryOpsCost(or.lhs, or.rhs)
}
type evalAnd struct {
id int64
lhs Interpretable
rhs Interpretable
}
// ID implements the Interpretable interface method.
func (and *evalAnd) ID() int64 {
return and.id
}
// Eval implements the Interpretable interface method.
func (and *evalAnd) Eval(ctx Activation) ref.Val {
// short-circuit lhs.
lVal := and.lhs.Eval(ctx)
lBool, lok := lVal.(types.Bool)
if lok && lBool == types.False {
return types.False
}
// short-circuit on rhs.
rVal := and.rhs.Eval(ctx)
rBool, rok := rVal.(types.Bool)
if rok && rBool == types.False {
return types.False
}
// return if both sides are bool true.
if lok && rok {
return types.True
}
// TODO: return both values as a set if both are unknown or error.
// prefer left unknown to right unknown.
if types.IsUnknown(lVal) {
return lVal
}
if types.IsUnknown(rVal) {
return rVal
}
// If the left-hand side is non-boolean return it as the error.
if types.IsError(lVal) {
return lVal
}
return types.ValOrErr(rVal, "no such overload")
}
// Cost implements the Coster interface method. The minimum possible cost incurs when the left-hand
// side expr is sufficient in determining the evaluation result.
func (and *evalAnd) Cost() (min, max int64) {
return calShortCircuitBinaryOpsCost(and.lhs, and.rhs)
}
func calShortCircuitBinaryOpsCost(lhs, rhs Interpretable) (min, max int64) {
lMin, lMax := estimateCost(lhs)
_, rMax := estimateCost(rhs)
return lMin, lMax + rMax + 1
}
type evalEq struct {
id int64
lhs Interpretable
rhs Interpretable
}
// ID implements the Interpretable interface method.
func (eq *evalEq) ID() int64 {
return eq.id
}
// Eval implements the Interpretable interface method.
func (eq *evalEq) Eval(ctx Activation) ref.Val {
lVal := eq.lhs.Eval(ctx)
rVal := eq.rhs.Eval(ctx)
return lVal.Equal(rVal)
}
// Cost implements the Coster interface method.
func (eq *evalEq) Cost() (min, max int64) {
return calExhaustiveBinaryOpsCost(eq.lhs, eq.rhs)
}
// Function implements the InterpretableCall interface method.
func (*evalEq) Function() string {
return operators.Equals
}
// OverloadID implements the InterpretableCall interface method.
func (*evalEq) OverloadID() string {
return overloads.Equals
}
// Args implements the InterpretableCall interface method.
func (eq *evalEq) Args() []Interpretable {
return []Interpretable{eq.lhs, eq.rhs}
}
type evalNe struct {
id int64
lhs Interpretable
rhs Interpretable
}
// ID implements the Interpretable interface method.
func (ne *evalNe) ID() int64 {
return ne.id
}
// Eval implements the Interpretable interface method.
func (ne *evalNe) Eval(ctx Activation) ref.Val {
lVal := ne.lhs.Eval(ctx)
rVal := ne.rhs.Eval(ctx)
eqVal := lVal.Equal(rVal)
eqBool, ok := eqVal.(types.Bool)
if !ok {
return types.ValOrErr(eqVal, "no such overload: _!=_")
}
return !eqBool
}
// Cost implements the Coster interface method.
func (ne *evalNe) Cost() (min, max int64) {
return calExhaustiveBinaryOpsCost(ne.lhs, ne.rhs)
}
// Function implements the InterpretableCall interface method.
func (*evalNe) Function() string {
return operators.NotEquals
}
// OverloadID implements the InterpretableCall interface method.
func (*evalNe) OverloadID() string {
return overloads.NotEquals
}
// Args implements the InterpretableCall interface method.
func (ne *evalNe) Args() []Interpretable {
return []Interpretable{ne.lhs, ne.rhs}
}
type evalZeroArity struct {
id int64
function string
overload string
impl functions.FunctionOp
}
// ID implements the Interpretable interface method.
func (zero *evalZeroArity) ID() int64 {
return zero.id
}
// Eval implements the Interpretable interface method.
func (zero *evalZeroArity) Eval(ctx Activation) ref.Val {
return zero.impl()
}
// Cost returns 1 representing the heuristic cost of the function.
func (zero *evalZeroArity) Cost() (min, max int64) {
return 1, 1
}
// Function implements the InterpretableCall interface method.
func (zero *evalZeroArity) Function() string {
return zero.function
}
// OverloadID implements the InterpretableCall interface method.
func (zero *evalZeroArity) OverloadID() string {
return zero.overload
}
// Args returns the argument to the unary function.
func (zero *evalZeroArity) Args() []Interpretable {
return []Interpretable{}
}
type evalUnary struct {
id int64
function string
overload string
arg Interpretable
trait int
impl functions.UnaryOp
}
// ID implements the Interpretable interface method.
func (un *evalUnary) ID() int64 {
return un.id
}
// Eval implements the Interpretable interface method.
func (un *evalUnary) Eval(ctx Activation) ref.Val {
argVal := un.arg.Eval(ctx)
// Early return if the argument to the function is unknown or error.
if types.IsUnknownOrError(argVal) {
return argVal
}
// If the implementation is bound and the argument value has the right traits required to
// invoke it, then call the implementation.
if un.impl != nil && (un.trait == 0 || argVal.Type().HasTrait(un.trait)) {
return un.impl(argVal)
}
// Otherwise, if the argument is a ReceiverType attempt to invoke the receiver method on the
// operand (arg0).
if argVal.Type().HasTrait(traits.ReceiverType) {
return argVal.(traits.Receiver).Receive(un.function, un.overload, []ref.Val{})
}
return types.NewErr("no such overload: %s", un.function)
}
// Cost implements the Coster interface method.
func (un *evalUnary) Cost() (min, max int64) {
min, max = estimateCost(un.arg)
min++ // add cost for function
max++
return
}
// Function implements the InterpretableCall interface method.
func (un *evalUnary) Function() string {
return un.function
}
// OverloadID implements the InterpretableCall interface method.
func (un *evalUnary) OverloadID() string {
return un.overload
}
// Args returns the argument to the unary function.
func (un *evalUnary) Args() []Interpretable {
return []Interpretable{un.arg}
}
type evalBinary struct {
id int64
function string
overload string
lhs Interpretable
rhs Interpretable
trait int
impl functions.BinaryOp
}
// ID implements the Interpretable interface method.
func (bin *evalBinary) ID() int64 {
return bin.id
}
// Eval implements the Interpretable interface method.
func (bin *evalBinary) Eval(ctx Activation) ref.Val {
lVal := bin.lhs.Eval(ctx)
rVal := bin.rhs.Eval(ctx)
// Early return if any argument to the function is unknown or error.
if types.IsUnknownOrError(lVal) {
return lVal
}
if types.IsUnknownOrError(rVal) {
return rVal
}
// If the implementation is bound and the argument value has the right traits required to
// invoke it, then call the implementation.
if bin.impl != nil && (bin.trait == 0 || lVal.Type().HasTrait(bin.trait)) {
return bin.impl(lVal, rVal)
}
// Otherwise, if the argument is a ReceiverType attempt to invoke the receiver method on the
// operand (arg0).
if lVal.Type().HasTrait(traits.ReceiverType) {
return lVal.(traits.Receiver).Receive(bin.function, bin.overload, []ref.Val{rVal})
}
return types.NewErr("no such overload: %s", bin.function)
}
// Cost implements the Coster interface method.
func (bin *evalBinary) Cost() (min, max int64) {
return calExhaustiveBinaryOpsCost(bin.lhs, bin.rhs)
}
// Function implements the InterpretableCall interface method.
func (bin *evalBinary) Function() string {
return bin.function
}
// OverloadID implements the InterpretableCall interface method.
func (bin *evalBinary) OverloadID() string {
return bin.overload
}
// Args returns the argument to the unary function.
func (bin *evalBinary) Args() []Interpretable {
return []Interpretable{bin.lhs, bin.rhs}
}
type evalVarArgs struct {
id int64
function string
overload string
args []Interpretable
trait int
impl functions.FunctionOp
}
// ID implements the Interpretable interface method.
func (fn *evalVarArgs) ID() int64 {
return fn.id
}
// Eval implements the Interpretable interface method.
func (fn *evalVarArgs) Eval(ctx Activation) ref.Val {
argVals := make([]ref.Val, len(fn.args))
// Early return if any argument to the function is unknown or error.
for i, arg := range fn.args {
argVals[i] = arg.Eval(ctx)
if types.IsUnknownOrError(argVals[i]) {
return argVals[i]
}
}
// If the implementation is bound and the argument value has the right traits required to
// invoke it, then call the implementation.
arg0 := argVals[0]
if fn.impl != nil && (fn.trait == 0 || arg0.Type().HasTrait(fn.trait)) {
return fn.impl(argVals...)
}
// Otherwise, if the argument is a ReceiverType attempt to invoke the receiver method on the
// operand (arg0).
if arg0.Type().HasTrait(traits.ReceiverType) {
return arg0.(traits.Receiver).Receive(fn.function, fn.overload, argVals[1:])
}
return types.NewErr("no such overload: %s", fn.function)
}
// Cost implements the Coster interface method.
func (fn *evalVarArgs) Cost() (min, max int64) {
min, max = sumOfCost(fn.args)
min++ // add cost for function
max++
return
}
// Function implements the InterpretableCall interface method.
func (fn *evalVarArgs) Function() string {
return fn.function
}
// OverloadID implements the InterpretableCall interface method.
func (fn *evalVarArgs) OverloadID() string {
return fn.overload
}
// Args returns the argument to the unary function.
func (fn *evalVarArgs) Args() []Interpretable {
return fn.args
}
type evalList struct {
id int64
elems []Interpretable
adapter ref.TypeAdapter
}
// ID implements the Interpretable interface method.
func (l *evalList) ID() int64 {
return l.id
}
// Eval implements the Interpretable interface method.
func (l *evalList) Eval(ctx Activation) ref.Val {
elemVals := make([]ref.Val, len(l.elems))
// If any argument is unknown or error early terminate.
for i, elem := range l.elems {
elemVal := elem.Eval(ctx)
if types.IsUnknownOrError(elemVal) {
return elemVal
}
elemVals[i] = elemVal
}
return l.adapter.NativeToValue(elemVals)
}
// Cost implements the Coster interface method.
func (l *evalList) Cost() (min, max int64) {
return sumOfCost(l.elems)
}
type evalMap struct {
id int64
keys []Interpretable
vals []Interpretable
adapter ref.TypeAdapter
}
// ID implements the Interpretable interface method.
func (m *evalMap) ID() int64 {
return m.id
}
// Eval implements the Interpretable interface method.
func (m *evalMap) Eval(ctx Activation) ref.Val {
entries := make(map[ref.Val]ref.Val)
// If any argument is unknown or error early terminate.
for i, key := range m.keys {
keyVal := key.Eval(ctx)
if types.IsUnknownOrError(keyVal) {
return keyVal
}
valVal := m.vals[i].Eval(ctx)
if types.IsUnknownOrError(valVal) {
return valVal
}
entries[keyVal] = valVal
}
return m.adapter.NativeToValue(entries)
}
// Cost implements the Coster interface method.
func (m *evalMap) Cost() (min, max int64) {
kMin, kMax := sumOfCost(m.keys)
vMin, vMax := sumOfCost(m.vals)
return kMin + vMin, kMax + vMax
}
type evalObj struct {
id int64
typeName string
fields []string
vals []Interpretable
provider ref.TypeProvider
}
// ID implements the Interpretable interface method.
func (o *evalObj) ID() int64 {
return o.id
}
// Eval implements the Interpretable interface method.
func (o *evalObj) Eval(ctx Activation) ref.Val {
fieldVals := make(map[string]ref.Val)
// If any argument is unknown or error early terminate.
for i, field := range o.fields {
val := o.vals[i].Eval(ctx)
if types.IsUnknownOrError(val) {
return val
}
fieldVals[field] = val
}
return o.provider.NewValue(o.typeName, fieldVals)
}
// Cost implements the Coster interface method.
func (o *evalObj) Cost() (min, max int64) {
return sumOfCost(o.vals)
}
func sumOfCost(interps []Interpretable) (min, max int64) {
min, max = 0, 0
for _, in := range interps {
minT, maxT := estimateCost(in)
min += minT
max += maxT
}
return
}
type evalFold struct {
id int64
accuVar string
iterVar string
iterRange Interpretable
accu Interpretable
cond Interpretable
step Interpretable
result Interpretable
}
// ID implements the Interpretable interface method.
func (fold *evalFold) ID() int64 {
return fold.id
}
// Eval implements the Interpretable interface method.
func (fold *evalFold) Eval(ctx Activation) ref.Val {
foldRange := fold.iterRange.Eval(ctx)
if !foldRange.Type().HasTrait(traits.IterableType) {
return types.ValOrErr(foldRange, "got '%T', expected iterable type", foldRange)
}
// Configure the fold activation with the accumulator initial value.
accuCtx := varActivationPool.Get().(*varActivation)
accuCtx.parent = ctx
accuCtx.name = fold.accuVar
accuCtx.val = fold.accu.Eval(ctx)
iterCtx := varActivationPool.Get().(*varActivation)
iterCtx.parent = accuCtx
iterCtx.name = fold.iterVar
it := foldRange.(traits.Iterable).Iterator()
for it.HasNext() == types.True {
// Modify the iter var in the fold activation.
iterCtx.val = it.Next()
// Evaluate the condition, terminate the loop if false.
cond := fold.cond.Eval(iterCtx)
condBool, ok := cond.(types.Bool)
if !types.IsUnknown(cond) && ok && condBool != types.True {
break
}
// Evalute the evaluation step into accu var.
accuCtx.val = fold.step.Eval(iterCtx)
}
// Compute the result.
res := fold.result.Eval(accuCtx)
varActivationPool.Put(iterCtx)
varActivationPool.Put(accuCtx)
return res
}
// Cost implements the Coster interface method.
func (fold *evalFold) Cost() (min, max int64) {
// Compute the cost for evaluating iterRange.
iMin, iMax := estimateCost(fold.iterRange)
// Compute the size of iterRange. If the size depends on the input, return the maximum possible
// cost range.
foldRange := fold.iterRange.Eval(EmptyActivation())
if !foldRange.Type().HasTrait(traits.IterableType) {
return 0, math.MaxInt64
}
var rangeCnt int64
it := foldRange.(traits.Iterable).Iterator()
for it.HasNext() == types.True {
it.Next()
rangeCnt++
}
aMin, aMax := estimateCost(fold.accu)
cMin, cMax := estimateCost(fold.cond)
sMin, sMax := estimateCost(fold.step)
rMin, rMax := estimateCost(fold.result)
// The cond and step costs are multiplied by size(iterRange). The minimum possible cost incurs
// when the evaluation result can be determined by the first iteration.
return iMin + aMin + cMin + sMin + rMin,
iMax + aMax + cMax*rangeCnt + sMax*rangeCnt + rMax
}
// Optional Intepretable implementations that specialize, subsume, or extend the core evaluation
// plan via decorators.
// evalSetMembership is an Interpretable implementation which tests whether an input value
// exists within the set of map keys used to model a set.
type evalSetMembership struct {
inst Interpretable
arg Interpretable
argTypeName string
valueSet map[ref.Val]ref.Val
}
// ID implements the Interpretable interface method.
func (e *evalSetMembership) ID() int64 {
return e.inst.ID()
}
// Eval implements the Interpretable interface method.
func (e *evalSetMembership) Eval(ctx Activation) ref.Val {
val := e.arg.Eval(ctx)
if val.Type().TypeName() != e.argTypeName {
return types.ValOrErr(val, "no such overload")
}
if ret, found := e.valueSet[val]; found {
return ret
}
return types.False
}
// Cost implements the Coster interface method.
func (e *evalSetMembership) Cost() (min, max int64) {
return estimateCost(e.arg)
}
// evalWatch is an Interpretable implementation that wraps the execution of a given
// expression so that it may observe the computed value and send it to an observer.
type evalWatch struct {
Interpretable
observer evalObserver
}
// Eval implements the Interpretable interface method.
func (e *evalWatch) Eval(ctx Activation) ref.Val {
val := e.Interpretable.Eval(ctx)
e.observer(e.ID(), val)
return val
}
// Cost implements the Coster interface method.
func (e *evalWatch) Cost() (min, max int64) {
return estimateCost(e.Interpretable)
}
// evalWatchAttr describes a watcher of an instAttr Interpretable.
//
// Since the watcher may be selected against at a later stage in program planning, the watcher
// must implement the instAttr interface by proxy.
type evalWatchAttr struct {
InterpretableAttribute
observer evalObserver
}
// AddQualifier creates a wrapper over the incoming qualifier which observes the qualification
// result.
func (e *evalWatchAttr) AddQualifier(q Qualifier) (Attribute, error) {
cq, isConst := q.(ConstantQualifier)
if isConst {
q = &evalWatchConstQual{
ConstantQualifier: cq,
observer: e.observer,
adapter: e.InterpretableAttribute.Adapter(),
}
} else {
q = &evalWatchQual{
Qualifier: q,
observer: e.observer,
adapter: e.InterpretableAttribute.Adapter(),
}
}
_, err := e.InterpretableAttribute.AddQualifier(q)
return e, err
}
// evalWatchConstQual observes the qualification of an object using a constant boolean, int,
// string, or uint.
type evalWatchConstQual struct {
ConstantQualifier
observer evalObserver
adapter ref.TypeAdapter
}
// Cost implements the Coster interface method.
func (e *evalWatchConstQual) Cost() (min, max int64) {
return estimateCost(e.ConstantQualifier)
}
// Qualify observes the qualification of a object via a constant boolean, int, string, or uint.
func (e *evalWatchConstQual) Qualify(vars Activation, obj interface{}) (interface{}, error) {
out, err := e.ConstantQualifier.Qualify(vars, obj)
var val ref.Val
if err != nil {
val = types.NewErr(err.Error())
} else {
val = e.adapter.NativeToValue(out)
}
e.observer(e.ID(), val)
return out, err
}
// QualifierValueEquals tests whether the incoming value is equal to the qualificying constant.
func (e *evalWatchConstQual) QualifierValueEquals(value interface{}) bool {
qve, ok := e.ConstantQualifier.(qualifierValueEquator)
return ok && qve.QualifierValueEquals(value)
}
// evalWatchQual observes the qualification of an object by a value computed at runtime.
type evalWatchQual struct {
Qualifier
observer evalObserver
adapter ref.TypeAdapter
}
// Cost implements the Coster interface method.
func (e *evalWatchQual) Cost() (min, max int64) {
return estimateCost(e.Qualifier)
}
// Qualify observes the qualification of a object via a value computed at runtime.
func (e *evalWatchQual) Qualify(vars Activation, obj interface{}) (interface{}, error) {
out, err := e.Qualifier.Qualify(vars, obj)
var val ref.Val
if err != nil {
val = types.NewErr(err.Error())
} else {
val = e.adapter.NativeToValue(out)
}
e.observer(e.ID(), val)
return out, err
}
// Cost implements the Coster interface method.
func (e *evalWatchAttr) Cost() (min, max int64) {
return estimateCost(e.InterpretableAttribute)
}
// Eval implements the Interpretable interface method.
func (e *evalWatchAttr) Eval(vars Activation) ref.Val {
val := e.InterpretableAttribute.Eval(vars)
e.observer(e.ID(), val)
return val
}
// evalWatchConst describes a watcher of an instConst Interpretable.
type evalWatchConst struct {
InterpretableConst
observer evalObserver
}
// Eval implements the Interpretable interface method.
func (e *evalWatchConst) Eval(vars Activation) ref.Val {
val := e.Value()
e.observer(e.ID(), val)
return val
}
// Cost implements the Coster interface method.
func (e *evalWatchConst) Cost() (min, max int64) {
return estimateCost(e.InterpretableConst)
}
// evalExhaustiveOr is just like evalOr, but does not short-circuit argument evaluation.
type evalExhaustiveOr struct {
id int64
lhs Interpretable
rhs Interpretable
}
// ID implements the Interpretable interface method.
func (or *evalExhaustiveOr) ID() int64 {
return or.id
}
// Eval implements the Interpretable interface method.
func (or *evalExhaustiveOr) Eval(ctx Activation) ref.Val {
lVal := or.lhs.Eval(ctx)
rVal := or.rhs.Eval(ctx)
lBool, lok := lVal.(types.Bool)
if lok && lBool == types.True {
return types.True
}
rBool, rok := rVal.(types.Bool)
if rok && rBool == types.True {
return types.True
}
if lok && rok {
return types.False
}
if types.IsUnknown(lVal) {
return lVal
}
if types.IsUnknown(rVal) {
return rVal
}
// TODO: Combine the errors into a set in the future.
// If the left-hand side is non-boolean return it as the error.
if types.IsError(lVal) {
return lVal
}
return types.ValOrErr(rVal, "no such overload")
}
// Cost implements the Coster interface method.
func (or *evalExhaustiveOr) Cost() (min, max int64) {
return calExhaustiveBinaryOpsCost(or.lhs, or.rhs)
}
// evalExhaustiveAnd is just like evalAnd, but does not short-circuit argument evaluation.
type evalExhaustiveAnd struct {
id int64
lhs Interpretable
rhs Interpretable
}
// ID implements the Interpretable interface method.
func (and *evalExhaustiveAnd) ID() int64 {
return and.id
}
// Eval implements the Interpretable interface method.
func (and *evalExhaustiveAnd) Eval(ctx Activation) ref.Val {
lVal := and.lhs.Eval(ctx)