-
Notifications
You must be signed in to change notification settings - Fork 66
/
Copy pathmnist.py
72 lines (55 loc) · 2.26 KB
/
mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
#!/usr/bin/python
#
# Copyright 2020 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""This tutorial comes from the Tensorflow MNIST quickstart at
https://www.tensorflow.org/tutorials/quickstart/beginner.
"""
import warnings
import tensorflow as tf
from absl import app, flags
warnings.filterwarnings("ignore", category=DeprecationWarning)
FLAGS = flags.FLAGS
# Define a command-line argument using the Abseil library:
# https://abseil.io/docs/python/guides/flags
flags.DEFINE_float("learning_rate", 0.1, "Learning rate.")
flags.DEFINE_integer("epochs", 3, "Epochs to train.")
def get_keras_model(width=128, activation="relu"):
"""Returns an instance of a Keras Sequential model.
https://www.tensorflow.org/api_docs/python/tf/keras/Sequential"""
return tf.keras.models.Sequential(
[
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(width, activation=activation),
tf.keras.layers.Dense(width, activation=activation),
tf.keras.layers.Dense(10, activation=None),
]
)
def main(_):
"""Train a model against the MNIST dataset and print performance metrics."""
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
model = get_keras_model()
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
optimizer = tf.keras.optimizers.Adam(learning_rate=FLAGS.learning_rate)
model.compile(optimizer=optimizer, loss=loss_fn, metrics=["accuracy"])
print(
f"Training model with learning rate={FLAGS.learning_rate} for {FLAGS.epochs} epochs."
)
model.fit(x_train, y_train, epochs=FLAGS.epochs)
print("Model performance: ")
model.evaluate(x_test, y_test, verbose=2)
if __name__ == "__main__":
app.run(main)