-
Notifications
You must be signed in to change notification settings - Fork 343
/
camera_utils.py
763 lines (624 loc) · 28.1 KB
/
camera_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
# Copyright 2022 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Camera pose and ray generation utility functions."""
import enum
import types
from typing import List, Mapping, Optional, Text, Tuple, Union
from internal import configs
from internal import math
from internal import stepfun
from internal import utils
import jax.numpy as jnp
import numpy as np
import scipy
_Array = Union[np.ndarray, jnp.ndarray]
def convert_to_ndc(origins: _Array,
directions: _Array,
pixtocam: _Array,
near: float = 1.,
xnp: types.ModuleType = np) -> Tuple[_Array, _Array]:
"""Converts a set of rays to normalized device coordinates (NDC).
Args:
origins: ndarray(float32), [..., 3], world space ray origins.
directions: ndarray(float32), [..., 3], world space ray directions.
pixtocam: ndarray(float32), [3, 3], inverse intrinsic matrix.
near: float, near plane along the negative z axis.
xnp: either numpy or jax.numpy.
Returns:
origins_ndc: ndarray(float32), [..., 3].
directions_ndc: ndarray(float32), [..., 3].
This function assumes input rays should be mapped into the NDC space for a
perspective projection pinhole camera, with identity extrinsic matrix (pose)
and intrinsic parameters defined by inputs focal, width, and height.
The near value specifies the near plane of the frustum, and the far plane is
assumed to be infinity.
The ray bundle for the identity pose camera will be remapped to parallel rays
within the (-1, -1, -1) to (1, 1, 1) cube. Any other ray in the original
world space can be remapped as long as it has dz < 0 (ray direction has a
negative z-coord); this allows us to share a common NDC space for "forward
facing" scenes.
Note that
projection(origins + t * directions)
will NOT be equal to
origins_ndc + t * directions_ndc
and that the directions_ndc are not unit length. Rather, directions_ndc is
defined such that the valid near and far planes in NDC will be 0 and 1.
See Appendix C in https://arxiv.org/abs/2003.08934 for additional details.
"""
# Shift ray origins to near plane, such that oz = -near.
# This makes the new near bound equal to 0.
t = -(near + origins[..., 2]) / directions[..., 2]
origins = origins + t[..., None] * directions
dx, dy, dz = xnp.moveaxis(directions, -1, 0)
ox, oy, oz = xnp.moveaxis(origins, -1, 0)
xmult = 1. / pixtocam[0, 2] # Equal to -2. * focal / cx
ymult = 1. / pixtocam[1, 2] # Equal to -2. * focal / cy
# Perspective projection into NDC for the t = 0 near points
# origins + 0 * directions
origins_ndc = xnp.stack([xmult * ox / oz, ymult * oy / oz,
-xnp.ones_like(oz)], axis=-1)
# Perspective projection into NDC for the t = infinity far points
# origins + infinity * directions
infinity_ndc = xnp.stack([xmult * dx / dz, ymult * dy / dz,
xnp.ones_like(oz)],
axis=-1)
# directions_ndc points from origins_ndc to infinity_ndc
directions_ndc = infinity_ndc - origins_ndc
return origins_ndc, directions_ndc
def pad_poses(p: np.ndarray) -> np.ndarray:
"""Pad [..., 3, 4] pose matrices with a homogeneous bottom row [0,0,0,1]."""
bottom = np.broadcast_to([0, 0, 0, 1.], p[..., :1, :4].shape)
return np.concatenate([p[..., :3, :4], bottom], axis=-2)
def unpad_poses(p: np.ndarray) -> np.ndarray:
"""Remove the homogeneous bottom row from [..., 4, 4] pose matrices."""
return p[..., :3, :4]
def recenter_poses(poses: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
"""Recenter poses around the origin."""
cam2world = average_pose(poses)
transform = np.linalg.inv(pad_poses(cam2world))
poses = transform @ pad_poses(poses)
return unpad_poses(poses), transform
def average_pose(poses: np.ndarray) -> np.ndarray:
"""New pose using average position, z-axis, and up vector of input poses."""
position = poses[:, :3, 3].mean(0)
z_axis = poses[:, :3, 2].mean(0)
up = poses[:, :3, 1].mean(0)
cam2world = viewmatrix(z_axis, up, position)
return cam2world
def viewmatrix(lookdir: np.ndarray, up: np.ndarray,
position: np.ndarray) -> np.ndarray:
"""Construct lookat view matrix."""
vec2 = normalize(lookdir)
vec0 = normalize(np.cross(up, vec2))
vec1 = normalize(np.cross(vec2, vec0))
m = np.stack([vec0, vec1, vec2, position], axis=1)
return m
def normalize(x: np.ndarray) -> np.ndarray:
"""Normalization helper function."""
return x / np.linalg.norm(x)
def focus_point_fn(poses: np.ndarray) -> np.ndarray:
"""Calculate nearest point to all focal axes in poses."""
directions, origins = poses[:, :3, 2:3], poses[:, :3, 3:4]
m = np.eye(3) - directions * np.transpose(directions, [0, 2, 1])
mt_m = np.transpose(m, [0, 2, 1]) @ m
focus_pt = np.linalg.inv(mt_m.mean(0)) @ (mt_m @ origins).mean(0)[:, 0]
return focus_pt
# Constants for generate_spiral_path():
NEAR_STRETCH = .9 # Push forward near bound for forward facing render path.
FAR_STRETCH = 5. # Push back far bound for forward facing render path.
FOCUS_DISTANCE = .75 # Relative weighting of near, far bounds for render path.
def generate_spiral_path(poses: np.ndarray,
bounds: np.ndarray,
n_frames: int = 120,
n_rots: int = 2,
zrate: float = .5) -> np.ndarray:
"""Calculates a forward facing spiral path for rendering."""
# Find a reasonable 'focus depth' for this dataset as a weighted average
# of conservative near and far bounds in disparity space.
near_bound = bounds.min() * NEAR_STRETCH
far_bound = bounds.max() * FAR_STRETCH
# All cameras will point towards the world space point (0, 0, -focal).
focal = 1 / (((1 - FOCUS_DISTANCE) / near_bound + FOCUS_DISTANCE / far_bound))
# Get radii for spiral path using 90th percentile of camera positions.
positions = poses[:, :3, 3]
radii = np.percentile(np.abs(positions), 90, 0)
radii = np.concatenate([radii, [1.]])
# Generate poses for spiral path.
render_poses = []
cam2world = average_pose(poses)
up = poses[:, :3, 1].mean(0)
for theta in np.linspace(0., 2. * np.pi * n_rots, n_frames, endpoint=False):
t = radii * [np.cos(theta), -np.sin(theta), -np.sin(theta * zrate), 1.]
position = cam2world @ t
lookat = cam2world @ [0, 0, -focal, 1.]
z_axis = position - lookat
render_poses.append(viewmatrix(z_axis, up, position))
render_poses = np.stack(render_poses, axis=0)
return render_poses
def transform_poses_pca(poses: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
"""Transforms poses so principal components lie on XYZ axes.
Args:
poses: a (N, 3, 4) array containing the cameras' camera to world transforms.
Returns:
A tuple (poses, transform), with the transformed poses and the applied
camera_to_world transforms.
"""
t = poses[:, :3, 3]
t_mean = t.mean(axis=0)
t = t - t_mean
eigval, eigvec = np.linalg.eig(t.T @ t)
# Sort eigenvectors in order of largest to smallest eigenvalue.
inds = np.argsort(eigval)[::-1]
eigvec = eigvec[:, inds]
rot = eigvec.T
if np.linalg.det(rot) < 0:
rot = np.diag(np.array([1, 1, -1])) @ rot
transform = np.concatenate([rot, rot @ -t_mean[:, None]], -1)
poses_recentered = unpad_poses(transform @ pad_poses(poses))
transform = np.concatenate([transform, np.eye(4)[3:]], axis=0)
# Flip coordinate system if z component of y-axis is negative
if poses_recentered.mean(axis=0)[2, 1] < 0:
poses_recentered = np.diag(np.array([1, -1, -1])) @ poses_recentered
transform = np.diag(np.array([1, -1, -1, 1])) @ transform
# Just make sure it's it in the [-1, 1]^3 cube
scale_factor = 1. / np.max(np.abs(poses_recentered[:, :3, 3]))
poses_recentered[:, :3, 3] *= scale_factor
transform = np.diag(np.array([scale_factor] * 3 + [1])) @ transform
return poses_recentered, transform
def generate_ellipse_path(poses: np.ndarray,
n_frames: int = 120,
const_speed: bool = True,
z_variation: float = 0.,
z_phase: float = 0.) -> np.ndarray:
"""Generate an elliptical render path based on the given poses."""
# Calculate the focal point for the path (cameras point toward this).
center = focus_point_fn(poses)
# Path height sits at z=0 (in middle of zero-mean capture pattern).
offset = np.array([center[0], center[1], 0])
# Calculate scaling for ellipse axes based on input camera positions.
sc = np.percentile(np.abs(poses[:, :3, 3] - offset), 90, axis=0)
# Use ellipse that is symmetric about the focal point in xy.
low = -sc + offset
high = sc + offset
# Optional height variation need not be symmetric
z_low = np.percentile((poses[:, :3, 3]), 10, axis=0)
z_high = np.percentile((poses[:, :3, 3]), 90, axis=0)
def get_positions(theta):
# Interpolate between bounds with trig functions to get ellipse in x-y.
# Optionally also interpolate in z to change camera height along path.
return np.stack([
low[0] + (high - low)[0] * (np.cos(theta) * .5 + .5),
low[1] + (high - low)[1] * (np.sin(theta) * .5 + .5),
z_variation * (z_low[2] + (z_high - z_low)[2] *
(np.cos(theta + 2 * np.pi * z_phase) * .5 + .5)),
], -1)
theta = np.linspace(0, 2. * np.pi, n_frames + 1, endpoint=True)
positions = get_positions(theta)
if const_speed:
# Resample theta angles so that the velocity is closer to constant.
lengths = np.linalg.norm(positions[1:] - positions[:-1], axis=-1)
theta = stepfun.sample(None, theta, np.log(lengths), n_frames + 1)
positions = get_positions(theta)
# Throw away duplicated last position.
positions = positions[:-1]
# Set path's up vector to axis closest to average of input pose up vectors.
avg_up = poses[:, :3, 1].mean(0)
avg_up = avg_up / np.linalg.norm(avg_up)
ind_up = np.argmax(np.abs(avg_up))
up = np.eye(3)[ind_up] * np.sign(avg_up[ind_up])
return np.stack([viewmatrix(p - center, up, p) for p in positions])
def generate_interpolated_path(poses: np.ndarray,
n_interp: int,
spline_degree: int = 5,
smoothness: float = .03,
rot_weight: float = .1):
"""Creates a smooth spline path between input keyframe camera poses.
Spline is calculated with poses in format (position, lookat-point, up-point).
Args:
poses: (n, 3, 4) array of input pose keyframes.
n_interp: returned path will have n_interp * (n - 1) total poses.
spline_degree: polynomial degree of B-spline.
smoothness: parameter for spline smoothing, 0 forces exact interpolation.
rot_weight: relative weighting of rotation/translation in spline solve.
Returns:
Array of new camera poses with shape (n_interp * (n - 1), 3, 4).
"""
def poses_to_points(poses, dist):
"""Converts from pose matrices to (position, lookat, up) format."""
pos = poses[:, :3, -1]
lookat = poses[:, :3, -1] - dist * poses[:, :3, 2]
up = poses[:, :3, -1] + dist * poses[:, :3, 1]
return np.stack([pos, lookat, up], 1)
def points_to_poses(points):
"""Converts from (position, lookat, up) format to pose matrices."""
return np.array([viewmatrix(p - l, u - p, p) for p, l, u in points])
def interp(points, n, k, s):
"""Runs multidimensional B-spline interpolation on the input points."""
sh = points.shape
pts = np.reshape(points, (sh[0], -1))
k = min(k, sh[0] - 1)
tck, _ = scipy.interpolate.splprep(pts.T, k=k, s=s)
u = np.linspace(0, 1, n, endpoint=False)
new_points = np.array(scipy.interpolate.splev(u, tck))
new_points = np.reshape(new_points.T, (n, sh[1], sh[2]))
return new_points
points = poses_to_points(poses, dist=rot_weight)
new_points = interp(points,
n_interp * (points.shape[0] - 1),
k=spline_degree,
s=smoothness)
return points_to_poses(new_points)
def interpolate_1d(x: np.ndarray,
n_interp: int,
spline_degree: int,
smoothness: float) -> np.ndarray:
"""Interpolate 1d signal x (by a factor of n_interp times)."""
t = np.linspace(0, 1, len(x), endpoint=True)
tck = scipy.interpolate.splrep(t, x, s=smoothness, k=spline_degree)
n = n_interp * (len(x) - 1)
u = np.linspace(0, 1, n, endpoint=False)
return scipy.interpolate.splev(u, tck)
def create_render_spline_path(
config: configs.Config,
image_names: Union[Text, List[Text]],
poses: np.ndarray,
exposures: Optional[np.ndarray],
) -> Tuple[np.ndarray, np.ndarray, Optional[np.ndarray]]:
"""Creates spline interpolation render path from subset of dataset poses.
Args:
config: configs.Config object.
image_names: either a directory of images or a text file of image names.
poses: [N, 3, 4] array of extrinsic camera pose matrices.
exposures: optional list of floating point exposure values.
Returns:
spline_indices: list of indices used to select spline keyframe poses.
render_poses: array of interpolated extrinsic camera poses for the path.
render_exposures: optional list of interpolated exposures for the path.
"""
if utils.isdir(config.render_spline_keyframes):
# If directory, use image filenames.
keyframe_names = sorted(utils.listdir(config.render_spline_keyframes))
else:
# If text file, treat each line as an image filename.
with utils.open_file(config.render_spline_keyframes, 'r') as fp:
# Decode bytes into string and split into lines.
keyframe_names = fp.read().decode('utf-8').splitlines()
# Grab poses corresponding to the image filenames.
spline_indices = np.array(
[i for i, n in enumerate(image_names) if n in keyframe_names])
keyframes = poses[spline_indices]
render_poses = generate_interpolated_path(
keyframes,
n_interp=config.render_spline_n_interp,
spline_degree=config.render_spline_degree,
smoothness=config.render_spline_smoothness,
rot_weight=.1)
if config.render_spline_interpolate_exposure:
if exposures is None:
raise ValueError('config.render_spline_interpolate_exposure is True but '
'create_render_spline_path() was passed exposures=None.')
# Interpolate per-frame exposure value.
log_exposure = np.log(exposures[spline_indices])
# Use aggressive smoothing for exposure interpolation to avoid flickering.
log_exposure_interp = interpolate_1d(
log_exposure,
config.render_spline_n_interp,
spline_degree=5,
smoothness=20)
render_exposures = np.exp(log_exposure_interp)
else:
render_exposures = None
return spline_indices, render_poses, render_exposures
def intrinsic_matrix(fx: float,
fy: float,
cx: float,
cy: float,
xnp: types.ModuleType = np) -> _Array:
"""Intrinsic matrix for a pinhole camera in OpenCV coordinate system."""
return xnp.array([
[fx, 0, cx],
[0, fy, cy],
[0, 0, 1.],
])
def get_pixtocam(focal: float,
width: float,
height: float,
xnp: types.ModuleType = np) -> _Array:
"""Inverse intrinsic matrix for a perfect pinhole camera."""
camtopix = intrinsic_matrix(focal, focal, width * .5, height * .5, xnp)
return xnp.linalg.inv(camtopix)
def pixel_coordinates(width: int,
height: int,
xnp: types.ModuleType = np) -> Tuple[_Array, _Array]:
"""Tuple of the x and y integer coordinates for a grid of pixels."""
return xnp.meshgrid(xnp.arange(width), xnp.arange(height), indexing='xy')
def _compute_residual_and_jacobian(
x: _Array,
y: _Array,
xd: _Array,
yd: _Array,
k1: float = 0.0,
k2: float = 0.0,
k3: float = 0.0,
k4: float = 0.0,
p1: float = 0.0,
p2: float = 0.0,
) -> Tuple[_Array, _Array, _Array, _Array, _Array, _Array]:
"""Auxiliary function of radial_and_tangential_undistort()."""
# Adapted from https://github.com/google/nerfies/blob/main/nerfies/camera.py
# let r(x, y) = x^2 + y^2;
# d(x, y) = 1 + k1 * r(x, y) + k2 * r(x, y) ^2 + k3 * r(x, y)^3 +
# k4 * r(x, y)^4;
r = x * x + y * y
d = 1.0 + r * (k1 + r * (k2 + r * (k3 + r * k4)))
# The perfect projection is:
# xd = x * d(x, y) + 2 * p1 * x * y + p2 * (r(x, y) + 2 * x^2);
# yd = y * d(x, y) + 2 * p2 * x * y + p1 * (r(x, y) + 2 * y^2);
#
# Let's define
#
# fx(x, y) = x * d(x, y) + 2 * p1 * x * y + p2 * (r(x, y) + 2 * x^2) - xd;
# fy(x, y) = y * d(x, y) + 2 * p2 * x * y + p1 * (r(x, y) + 2 * y^2) - yd;
#
# We are looking for a solution that satisfies
# fx(x, y) = fy(x, y) = 0;
fx = d * x + 2 * p1 * x * y + p2 * (r + 2 * x * x) - xd
fy = d * y + 2 * p2 * x * y + p1 * (r + 2 * y * y) - yd
# Compute derivative of d over [x, y]
d_r = (k1 + r * (2.0 * k2 + r * (3.0 * k3 + r * 4.0 * k4)))
d_x = 2.0 * x * d_r
d_y = 2.0 * y * d_r
# Compute derivative of fx over x and y.
fx_x = d + d_x * x + 2.0 * p1 * y + 6.0 * p2 * x
fx_y = d_y * x + 2.0 * p1 * x + 2.0 * p2 * y
# Compute derivative of fy over x and y.
fy_x = d_x * y + 2.0 * p2 * y + 2.0 * p1 * x
fy_y = d + d_y * y + 2.0 * p2 * x + 6.0 * p1 * y
return fx, fy, fx_x, fx_y, fy_x, fy_y
def _radial_and_tangential_undistort(
xd: _Array,
yd: _Array,
k1: float = 0,
k2: float = 0,
k3: float = 0,
k4: float = 0,
p1: float = 0,
p2: float = 0,
eps: float = 1e-9,
max_iterations=10,
xnp: types.ModuleType = np) -> Tuple[_Array, _Array]:
"""Computes undistorted (x, y) from (xd, yd)."""
# From https://github.com/google/nerfies/blob/main/nerfies/camera.py
# Initialize from the distorted point.
x = xnp.copy(xd)
y = xnp.copy(yd)
for _ in range(max_iterations):
fx, fy, fx_x, fx_y, fy_x, fy_y = _compute_residual_and_jacobian(
x=x, y=y, xd=xd, yd=yd, k1=k1, k2=k2, k3=k3, k4=k4, p1=p1, p2=p2)
denominator = fy_x * fx_y - fx_x * fy_y
x_numerator = fx * fy_y - fy * fx_y
y_numerator = fy * fx_x - fx * fy_x
step_x = xnp.where(
xnp.abs(denominator) > eps, x_numerator / denominator,
xnp.zeros_like(denominator))
step_y = xnp.where(
xnp.abs(denominator) > eps, y_numerator / denominator,
xnp.zeros_like(denominator))
x = x + step_x
y = y + step_y
return x, y
class ProjectionType(enum.Enum):
"""Camera projection type (standard perspective pinhole or fisheye model)."""
PERSPECTIVE = 'perspective'
FISHEYE = 'fisheye'
def pixels_to_rays(
pix_x_int: _Array,
pix_y_int: _Array,
pixtocams: _Array,
camtoworlds: _Array,
distortion_params: Optional[Mapping[str, float]] = None,
pixtocam_ndc: Optional[_Array] = None,
camtype: ProjectionType = ProjectionType.PERSPECTIVE,
xnp: types.ModuleType = np,
) -> Tuple[_Array, _Array, _Array, _Array, _Array]:
"""Calculates rays given pixel coordinates, intrinisics, and extrinsics.
Given 2D pixel coordinates pix_x_int, pix_y_int for cameras with
inverse intrinsics pixtocams and extrinsics camtoworlds (and optional
distortion coefficients distortion_params and NDC space projection matrix
pixtocam_ndc), computes the corresponding 3D camera rays.
Vectorized over the leading dimensions of the first four arguments.
Args:
pix_x_int: int array, shape SH, x coordinates of image pixels.
pix_y_int: int array, shape SH, y coordinates of image pixels.
pixtocams: float array, broadcastable to SH + [3, 3], inverse intrinsics.
camtoworlds: float array, broadcastable to SH + [3, 4], camera extrinsics.
distortion_params: dict of floats, optional camera distortion parameters.
pixtocam_ndc: float array, [3, 3], optional inverse intrinsics for NDC.
camtype: camera_utils.ProjectionType, fisheye or perspective camera.
xnp: either numpy or jax.numpy.
Returns:
origins: float array, shape SH + [3], ray origin points.
directions: float array, shape SH + [3], ray direction vectors.
viewdirs: float array, shape SH + [3], normalized ray direction vectors.
radii: float array, shape SH + [1], ray differential radii.
imageplane: float array, shape SH + [2], xy coordinates on the image plane.
If the image plane is at world space distance 1 from the pinhole, then
imageplane will be the xy coordinates of a pixel in that space (so the
camera ray direction at the origin would be (x, y, -1) in OpenGL coords).
"""
# Must add half pixel offset to shoot rays through pixel centers.
def pix_to_dir(x, y):
return xnp.stack([x + .5, y + .5, xnp.ones_like(x)], axis=-1)
# We need the dx and dy rays to calculate ray radii for mip-NeRF cones.
pixel_dirs_stacked = xnp.stack([
pix_to_dir(pix_x_int, pix_y_int),
pix_to_dir(pix_x_int + 1, pix_y_int),
pix_to_dir(pix_x_int, pix_y_int + 1)
], axis=0)
# For jax, need to specify high-precision matmul.
matmul = math.matmul if xnp == jnp else xnp.matmul
mat_vec_mul = lambda A, b: matmul(A, b[..., None])[..., 0]
# Apply inverse intrinsic matrices.
camera_dirs_stacked = mat_vec_mul(pixtocams, pixel_dirs_stacked)
if distortion_params is not None:
# Correct for distortion.
x, y = _radial_and_tangential_undistort(
camera_dirs_stacked[..., 0],
camera_dirs_stacked[..., 1],
**distortion_params,
xnp=xnp)
camera_dirs_stacked = xnp.stack([x, y, xnp.ones_like(x)], -1)
if camtype == ProjectionType.FISHEYE:
theta = xnp.sqrt(xnp.sum(xnp.square(camera_dirs_stacked[..., :2]), axis=-1))
theta = xnp.minimum(xnp.pi, theta)
sin_theta_over_theta = xnp.sin(theta) / theta
camera_dirs_stacked = xnp.stack([
camera_dirs_stacked[..., 0] * sin_theta_over_theta,
camera_dirs_stacked[..., 1] * sin_theta_over_theta,
xnp.cos(theta),
], axis=-1)
# Flip from OpenCV to OpenGL coordinate system.
camera_dirs_stacked = matmul(camera_dirs_stacked,
xnp.diag(xnp.array([1., -1., -1.])))
# Extract 2D image plane (x, y) coordinates.
imageplane = camera_dirs_stacked[0, ..., :2]
# Apply camera rotation matrices.
directions_stacked = mat_vec_mul(camtoworlds[..., :3, :3],
camera_dirs_stacked)
# Extract the offset rays.
directions, dx, dy = directions_stacked
origins = xnp.broadcast_to(camtoworlds[..., :3, -1], directions.shape)
viewdirs = directions / xnp.linalg.norm(directions, axis=-1, keepdims=True)
if pixtocam_ndc is None:
# Distance from each unit-norm direction vector to its neighbors.
dx_norm = xnp.linalg.norm(dx - directions, axis=-1)
dy_norm = xnp.linalg.norm(dy - directions, axis=-1)
else:
# Convert ray origins and directions into projective NDC space.
origins_dx, _ = convert_to_ndc(origins, dx, pixtocam_ndc, xnp=xnp)
origins_dy, _ = convert_to_ndc(origins, dy, pixtocam_ndc, xnp=xnp)
origins, directions = convert_to_ndc(origins, directions, pixtocam_ndc, xnp=xnp)
# In NDC space, we use the offset between origins instead of directions.
dx_norm = xnp.linalg.norm(origins_dx - origins, axis=-1)
dy_norm = xnp.linalg.norm(origins_dy - origins, axis=-1)
# Cut the distance in half, multiply it to match the variance of a uniform
# distribution the size of a pixel (1/12, see the original mipnerf paper).
radii = (0.5 * (dx_norm + dy_norm))[..., None] * 2 / xnp.sqrt(12)
return origins, directions, viewdirs, radii, imageplane
def cast_ray_batch(
cameras: Tuple[_Array, ...],
pixels: utils.Pixels,
camtype: ProjectionType = ProjectionType.PERSPECTIVE,
xnp: types.ModuleType = np) -> utils.Rays:
"""Maps from input cameras and Pixel batch to output Ray batch.
`cameras` is a Tuple of four sets of camera parameters.
pixtocams: 1 or N stacked [3, 3] inverse intrinsic matrices.
camtoworlds: 1 or N stacked [3, 4] extrinsic pose matrices.
distortion_params: optional, dict[str, float] containing pinhole model
distortion parameters.
pixtocam_ndc: optional, [3, 3] inverse intrinsic matrix for mapping to NDC.
Args:
cameras: described above.
pixels: integer pixel coordinates and camera indices, plus ray metadata.
These fields can be an arbitrary batch shape.
camtype: camera_utils.ProjectionType, fisheye or perspective camera.
xnp: either numpy or jax.numpy.
Returns:
rays: Rays dataclass with computed 3D world space ray data.
"""
pixtocams, camtoworlds, distortion_params, pixtocam_ndc = cameras
# pixels.cam_idx has shape [..., 1], remove this hanging dimension.
cam_idx = pixels.cam_idx[..., 0]
batch_index = lambda arr: arr if arr.ndim == 2 else arr[cam_idx]
# Compute rays from pixel coordinates.
origins, directions, viewdirs, radii, imageplane = pixels_to_rays(
pixels.pix_x_int,
pixels.pix_y_int,
batch_index(pixtocams),
batch_index(camtoworlds),
distortion_params=distortion_params,
pixtocam_ndc=pixtocam_ndc,
camtype=camtype,
xnp=xnp)
# Create Rays data structure.
return utils.Rays(
origins=origins,
directions=directions,
viewdirs=viewdirs,
radii=radii,
imageplane=imageplane,
lossmult=pixels.lossmult,
near=pixels.near,
far=pixels.far,
cam_idx=pixels.cam_idx,
exposure_idx=pixels.exposure_idx,
exposure_values=pixels.exposure_values,
)
def cast_pinhole_rays(camtoworld: _Array,
height: int,
width: int,
focal: float,
near: float,
far: float,
xnp: types.ModuleType) -> utils.Rays:
"""Wrapper for generating a pinhole camera ray batch (w/o distortion)."""
pix_x_int, pix_y_int = pixel_coordinates(width, height, xnp=xnp)
pixtocam = get_pixtocam(focal, width, height, xnp=xnp)
ray_args = pixels_to_rays(pix_x_int, pix_y_int, pixtocam, camtoworld, xnp=xnp)
broadcast_scalar = lambda x: xnp.broadcast_to(x, pix_x_int.shape)[..., None]
ray_kwargs = {
'lossmult': broadcast_scalar(1.),
'near': broadcast_scalar(near),
'far': broadcast_scalar(far),
'cam_idx': broadcast_scalar(0),
}
return utils.Rays(*ray_args, **ray_kwargs)
def cast_spherical_rays(camtoworld: _Array,
height: int,
width: int,
near: float,
far: float,
xnp: types.ModuleType) -> utils.Rays:
"""Generates a spherical camera ray batch."""
theta_vals = xnp.linspace(0, 2 * xnp.pi, width + 1)
phi_vals = xnp.linspace(0, xnp.pi, height + 1)
theta, phi = xnp.meshgrid(theta_vals, phi_vals, indexing='xy')
# Spherical coordinates in camera reference frame (y is up).
directions = xnp.stack([
-xnp.sin(phi) * xnp.sin(theta),
xnp.cos(phi),
xnp.sin(phi) * xnp.cos(theta),
],
axis=-1)
# For jax, need to specify high-precision matmul.
matmul = math.matmul if xnp == jnp else xnp.matmul
directions = matmul(camtoworld[:3, :3], directions[..., None])[..., 0]
dy = xnp.diff(directions[:, :-1], axis=0)
dx = xnp.diff(directions[:-1, :], axis=1)
directions = directions[:-1, :-1]
viewdirs = directions
origins = xnp.broadcast_to(camtoworld[:3, -1], directions.shape)
dx_norm = xnp.linalg.norm(dx, axis=-1)
dy_norm = xnp.linalg.norm(dy, axis=-1)
radii = (0.5 * (dx_norm + dy_norm))[..., None] * 2 / xnp.sqrt(12)
imageplane = xnp.zeros_like(directions[..., :2])
ray_args = (origins, directions, viewdirs, radii, imageplane)
broadcast_scalar = lambda x: xnp.broadcast_to(x, radii.shape[:-1])[..., None]
ray_kwargs = {
'lossmult': broadcast_scalar(1.),
'near': broadcast_scalar(near),
'far': broadcast_scalar(far),
'cam_idx': broadcast_scalar(0),
}
return utils.Rays(*ray_args, **ray_kwargs)