-
Notifications
You must be signed in to change notification settings - Fork 195
/
Copy pathcifar100_dataset.py
261 lines (225 loc) · 10.6 KB
/
cifar100_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
# Copyright 2019, Google LLC.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Library for loading and preprocessing CIFAR-100 training and testing data."""
import collections
from typing import Callable, Sequence, Tuple, Union
import tensorflow as tf
import tensorflow_federated as tff
CIFAR_SHAPE = (32, 32, 3)
TOTAL_FEATURE_SIZE = 32 * 32 * 3
NUM_EXAMPLES_PER_CLIENT = 500
def build_image_map(
crop_shape: Union[tf.Tensor, Sequence[int]],
distort: bool = False
) -> Callable[[tf.Tensor], Tuple[tf.Tensor, tf.Tensor]]:
"""Builds a function that crops and normalizes CIFAR-100 elements.
The image is first converted to a `tf.float32`, then cropped (according to
the `distort` argument). Finally, its values are normalized via
`tf.image.per_image_standardization`.
Args:
crop_shape: A tuple (crop_height, crop_width, channels)
specifying the desired crop shape for pre-processing batches. This cannot
exceed (32, 32, 3) element-wise. The element in the last index should be
set to 3 to maintain the RGB image structure of the elements.
distort: A boolean indicating whether to distort the image via random crops
and flips. If set to False, the image is resized to the `crop_shape` via
`tf.image.resize_with_crop_or_pad`.
Returns:
A callable accepting a tensor and performing the crops and normalization
discussed above.
"""
if distort:
def crop_fn(image):
image = tf.image.random_crop(image, size=crop_shape)
image = tf.image.random_flip_left_right(image)
return image
else:
def crop_fn(image):
return tf.image.resize_with_crop_or_pad(
image, target_height=crop_shape[0], target_width=crop_shape[1])
def image_map(example):
image = tf.cast(example['image'], tf.float32)
image = crop_fn(image)
image = tf.image.per_image_standardization(image)
return (image, example['label'])
return image_map
def create_preprocess_fn(
num_epochs: int,
batch_size: int,
shuffle_buffer_size: int = NUM_EXAMPLES_PER_CLIENT,
crop_shape: Tuple[int, int, int] = CIFAR_SHAPE,
distort_image=False,
num_parallel_calls: int = tf.data.experimental.AUTOTUNE
) -> Callable[[tf.data.Dataset], tf.data.Dataset]:
"""Creates a preprocessing function for CIFAR-100 client datasets.
Args:
num_epochs: An integer representing the number of epochs to repeat the
client datasets.
batch_size: An integer representing the batch size on clients.
shuffle_buffer_size: An integer representing the shuffle buffer size on
clients. If set to a number <= 1, no shuffling occurs.
crop_shape: A tuple (crop_height, crop_width, num_channels) specifying the
desired crop shape for pre-processing. This tuple cannot have elements
exceeding (32, 32, 3), element-wise. The element in the last index should
be set to 3 to maintain the RGB image structure of the elements.
distort_image: A boolean indicating whether to perform preprocessing that
includes image distortion, including random crops and flips.
num_parallel_calls: An integer representing the number of parallel calls
used when performing `tf.data.Dataset.map`.
Returns:
A callable performing the preprocessing described above.
"""
if num_epochs < 1:
raise ValueError('num_epochs must be a positive integer.')
if shuffle_buffer_size <= 1:
shuffle_buffer_size = 1
image_map_fn = build_image_map(crop_shape, distort_image)
def preprocess_fn(dataset):
return (
dataset.shuffle(shuffle_buffer_size).repeat(num_epochs)
# We map before batching to ensure that the cropping occurs
# at an image level (eg. we do not perform the same crop on
# every image within a batch)
.map(image_map_fn,
num_parallel_calls=num_parallel_calls).batch(batch_size))
return preprocess_fn
def get_federated_datasets(
train_client_batch_size: int = 20,
test_client_batch_size: int = 100,
train_client_epochs_per_round: int = 1,
test_client_epochs_per_round: int = 1,
train_shuffle_buffer_size: int = NUM_EXAMPLES_PER_CLIENT,
test_shuffle_buffer_size: int = 1,
crop_shape: Tuple[int, int, int] = CIFAR_SHAPE,
serializable: bool = False):
"""Loads and preprocesses federated CIFAR100 training and testing sets.
Args:
train_client_batch_size: The batch size for all train clients.
test_client_batch_size: The batch size for all test clients.
train_client_epochs_per_round: The number of epochs each train client should
iterate over their local dataset, via `tf.data.Dataset.repeat`. Must be
set to a positive integer.
test_client_epochs_per_round: The number of epochs each test client should
iterate over their local dataset, via `tf.data.Dataset.repeat`. Must be
set to a positive integer.
train_shuffle_buffer_size: An integer representing the shuffle buffer size
(as in `tf.data.Dataset.shuffle`) for each train client's dataset. By
default, this is set to the largest dataset size among all clients. If set
to some integer less than or equal to 1, no shuffling occurs.
test_shuffle_buffer_size: An integer representing the shuffle buffer size
(as in `tf.data.Dataset.shuffle`) for each test client's dataset. If set
to some integer less than or equal to 1, no shuffling occurs.
crop_shape: An iterable of integers specifying the desired crop
shape for pre-processing. Must be convertable to a tuple of integers
(CROP_HEIGHT, CROP_WIDTH, NUM_CHANNELS) which cannot have elements that
exceed (32, 32, 3), element-wise. The element in the last index should be
set to 3 to maintain the RGB image structure of the elements.
serializable: Boolean indicating whether the returned datasets are intended
to be serialized and shipped across RPC channels. If `True`, stateful
transformations will be disallowed.
Returns:
A tuple (cifar_train, cifar_test) of `tff.simulation.datasets.ClientData`
instances representing the federated training and test datasets.
"""
if not isinstance(crop_shape, collections.abc.Iterable):
raise TypeError('Argument crop_shape must be an iterable.')
crop_shape = tuple(crop_shape)
if len(crop_shape) != 3:
raise ValueError('The crop_shape must have length 3, corresponding to a '
'tensor of shape [height, width, channels].')
if not isinstance(serializable, bool):
raise TypeError(
'serializable must be a Boolean; you passed {} of type {}.'.format(
serializable, type(serializable)))
if train_client_epochs_per_round < 1:
raise ValueError(
'train_client_epochs_per_round must be a positive integer.')
if test_client_epochs_per_round < 0:
raise ValueError('test_client_epochs_per_round must be a positive integer.')
if train_shuffle_buffer_size <= 1:
train_shuffle_buffer_size = 1
if test_shuffle_buffer_size <= 1:
test_shuffle_buffer_size = 1
cifar_train, cifar_test = tff.simulation.datasets.cifar100.load_data()
train_preprocess_fn = create_preprocess_fn(
num_epochs=train_client_epochs_per_round,
batch_size=train_client_batch_size,
shuffle_buffer_size=train_shuffle_buffer_size,
crop_shape=crop_shape,
distort_image=not serializable)
test_preprocess_fn = create_preprocess_fn(
num_epochs=test_client_epochs_per_round,
batch_size=test_client_batch_size,
shuffle_buffer_size=test_shuffle_buffer_size,
crop_shape=crop_shape,
distort_image=False)
cifar_train = cifar_train.preprocess(train_preprocess_fn)
cifar_test = cifar_test.preprocess(test_preprocess_fn)
return cifar_train, cifar_test
def get_centralized_datasets(
train_batch_size: int = 20,
test_batch_size: int = 100,
train_shuffle_buffer_size: int = 10000,
test_shuffle_buffer_size: int = 1,
crop_shape: Tuple[int, int, int] = CIFAR_SHAPE
) -> Tuple[tf.data.Dataset, tf.data.Dataset]:
"""Loads and preprocesses centralized CIFAR100 training and testing sets.
Args:
train_batch_size: The batch size for the training dataset.
test_batch_size: The batch size for the test dataset.
train_shuffle_buffer_size: An integer specifying the buffer size used to
shuffle the train dataset via `tf.data.Dataset.shuffle`. If set to an
integer less than or equal to 1, no shuffling occurs.
test_shuffle_buffer_size: An integer specifying the buffer size used to
shuffle the test dataset via `tf.data.Dataset.shuffle`. If set to an
integer less than or equal to 1, no shuffling occurs.
crop_shape: An iterable of integers specifying the desired crop
shape for pre-processing. Must be convertable to a tuple of integers
(CROP_HEIGHT, CROP_WIDTH, NUM_CHANNELS) which cannot have elements that
exceed (32, 32, 3), element-wise. The element in the last index should be
set to 3 to maintain the RGB image structure of the elements.
Returns:
A tuple (cifar_train, cifar_test) of `tf.data.Dataset` instances
representing the centralized training and test datasets.
"""
try:
crop_shape = tuple(crop_shape)
except:
raise ValueError(
'Argument crop_shape must be able to coerced into a length 3 tuple.')
if len(crop_shape) != 3:
raise ValueError('The crop_shape must have length 3, corresponding to a '
'tensor of shape [height, width, channels].')
if train_shuffle_buffer_size <= 1:
train_shuffle_buffer_size = 1
if test_shuffle_buffer_size <= 1:
test_shuffle_buffer_size = 1
cifar_train, cifar_test = tff.simulation.datasets.cifar100.load_data()
cifar_train = cifar_train.create_tf_dataset_from_all_clients()
cifar_test = cifar_test.create_tf_dataset_from_all_clients()
train_preprocess_fn = create_preprocess_fn(
num_epochs=1,
batch_size=train_batch_size,
shuffle_buffer_size=train_shuffle_buffer_size,
crop_shape=crop_shape,
distort_image=True)
cifar_train = train_preprocess_fn(cifar_train)
test_preprocess_fn = create_preprocess_fn(
num_epochs=1,
batch_size=test_batch_size,
shuffle_buffer_size=test_shuffle_buffer_size,
crop_shape=crop_shape,
distort_image=False)
cifar_test = test_preprocess_fn(cifar_test)
return cifar_train, cifar_test