-
Notifications
You must be signed in to change notification settings - Fork 34
/
train_policy.py
230 lines (196 loc) · 8.48 KB
/
train_policy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
# coding=utf-8
# Copyright 2019 Google LLC.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
r"""Main file for training policies.
Many hyperparameters need to be passed through gin flags.
Consider using scripts/launcher_script.py to invoke train_policy with the
right hyperparameters and flags.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import tempfile
import time
from absl import flags
from episodic_curiosity import env_factory
from episodic_curiosity import eval_policy
from episodic_curiosity import utils
from third_party.baselines import logger
from third_party.baselines.ppo2 import policies
from third_party.baselines.ppo2 import ppo2
import gin
import tensorflow as tf
flags.DEFINE_string('workdir', None,
'Root directory for writing logs/summaries/checkpoints.')
flags.DEFINE_string('env_name', 'CartPole-v0', 'What environment to run')
flags.DEFINE_string('policy_architecture', 'cnn',
'What model architecture to use')
flags.DEFINE_string('r_checkpoint', '', 'Location of the R-network checkpoint')
flags.DEFINE_integer('num_env', 12, 'Number of environment copies to run in '
'subprocesses.')
flags.DEFINE_string('dmlab_homepath', '', '')
flags.DEFINE_integer('num_timesteps', 10000000, 'Number of frames to run '
'training for.')
flags.DEFINE_string('action_set', '',
'(small|nofire|) - which action set to use')
flags.DEFINE_bool('use_curiosity', False,
'Whether to enable Pathak\'s curiosity')
flags.DEFINE_bool('random_state_predictor', False,
'Whether to use random state predictor for Pathak\'s '
'curiosity')
flags.DEFINE_float('curiosity_strength', 0.01,
'Strength of the intrinsic reward in Pathak\'s algorithm.')
flags.DEFINE_float('forward_inverse_ratio', 0.2,
'Weighting of forward vs inverse loss in Pathak\'s '
'algorithm')
flags.DEFINE_float('curiosity_loss_strength', 10,
'Weight of the curiosity loss in Pathak\'s algorithm.')
# pylint: disable=g-inconsistent-quotes
flags.DEFINE_multi_string(
'gin_files', [], 'List of paths to gin configuration files')
flags.DEFINE_multi_string(
'gin_bindings', [],
'Gin bindings to override the values set in the config files '
'(e.g. "DQNAgent.epsilon_train=0.1",'
' "create_environment.game_name="Pong"").')
# pylint: enable=g-inconsistent-quotes
FLAGS = flags.FLAGS
def get_environment(env_name):
dmlab_prefix = 'dmlab:'
atari_prefix = 'atari:'
parkour_prefix = 'parkour:'
if env_name.startswith(dmlab_prefix):
level_name = env_name[len(dmlab_prefix):]
return env_factory.create_environments(
level_name,
FLAGS.num_env,
FLAGS.r_checkpoint,
FLAGS.dmlab_homepath,
action_set=FLAGS.action_set,
r_network_weights_store_path=FLAGS.workdir)
elif env_name.startswith(atari_prefix):
level_name = env_name[len(atari_prefix):]
return env_factory.create_environments(
level_name,
FLAGS.num_env,
FLAGS.r_checkpoint,
environment_engine='atari',
r_network_weights_store_path=FLAGS.workdir)
if env_name.startswith(parkour_prefix):
return env_factory.create_environments(
env_name[len(parkour_prefix):],
FLAGS.num_env,
FLAGS.r_checkpoint,
environment_engine='parkour',
r_network_weights_store_path=FLAGS.workdir)
raise ValueError('Unknown environment: {}'.format(env_name))
@gin.configurable
def train(workdir, env_name, num_timesteps,
nsteps=256,
nminibatches=4,
noptepochs=4,
learning_rate=2.5e-4,
ent_coef=0.01):
"""Runs PPO training.
Args:
workdir: where to store experiment results/logs
env_name: the name of the environment to run
num_timesteps: for how many timesteps to run training
nsteps: Number of consecutive environment steps to use during training.
nminibatches: Minibatch size.
noptepochs: Number of optimization epochs.
learning_rate: Initial learning rate.
ent_coef: Entropy coefficient.
"""
train_measurements = utils.create_measurement_series(workdir, 'reward_train')
valid_measurements = utils.create_measurement_series(workdir, 'reward_valid')
test_measurements = utils.create_measurement_series(workdir, 'reward_test')
def measurement_callback(unused_eplenmean, eprewmean, global_step_val):
if train_measurements:
train_measurements.create_measurement(
objective_value=eprewmean, step=global_step_val)
def eval_callback_on_valid(eprewmean, global_step_val):
if valid_measurements:
valid_measurements.create_measurement(
objective_value=eprewmean, step=global_step_val)
def eval_callback_on_test(eprewmean, global_step_val):
if test_measurements:
test_measurements.create_measurement(
objective_value=eprewmean, step=global_step_val)
logger_dir = workdir
logger.configure(logger_dir)
env, valid_env, test_env = get_environment(env_name)
is_ant = env_name.startswith('parkour:')
# Validation metric.
policy_evaluator_on_valid = eval_policy.PolicyEvaluator(
valid_env,
metric_callback=eval_callback_on_valid,
video_filename=None)
# Test metric (+ videos).
video_filename = os.path.join(FLAGS.workdir, 'video')
policy_evaluator_on_test = eval_policy.PolicyEvaluator(
test_env,
metric_callback=eval_callback_on_test,
video_filename=video_filename,
grayscale=(env_name.startswith('atari:')))
# Delay to make sure that all the DMLab environments acquire
# the GPU resources before TensorFlow acquire the rest of the memory.
# TODO(damienv): Possibly use allow_grow in a TensorFlow session
# so that there is no such problem anymore.
time.sleep(15)
cloud_sync_callback = lambda: None
def evaluate_valid_test(model_step_fn, global_step):
if not is_ant:
policy_evaluator_on_valid.evaluate(model_step_fn, global_step)
policy_evaluator_on_test.evaluate(model_step_fn, global_step)
with tf.Session():
policy = {'cnn': policies.CnnPolicy,
'lstm': policies.LstmPolicy,
'lnlstm': policies.LnLstmPolicy,
'mlp': policies.MlpPolicy}[FLAGS.policy_architecture]
# Openai baselines never performs num_timesteps env steps because
# of the way it samples training data in batches. The number of timesteps
# is multiplied by 1.1 (hacky) to insure at least num_timesteps are
# performed.
ppo2.learn(policy, env=env, nsteps=nsteps, nminibatches=nminibatches,
lam=0.95, gamma=0.99, noptepochs=noptepochs, log_interval=1,
ent_coef=ent_coef,
lr=learning_rate if is_ant else lambda f: f * learning_rate,
cliprange=0.2 if is_ant else lambda f: f * 0.1,
total_timesteps=int(num_timesteps * 1.1),
train_callback=measurement_callback,
eval_callback=evaluate_valid_test,
cloud_sync_callback=cloud_sync_callback,
save_interval=200, workdir=workdir,
use_curiosity=FLAGS.use_curiosity,
curiosity_strength=FLAGS.curiosity_strength,
forward_inverse_ratio=FLAGS.forward_inverse_ratio,
curiosity_loss_strength=FLAGS.curiosity_loss_strength,
random_state_predictor=FLAGS.random_state_predictor)
cloud_sync_callback()
test_env.close()
valid_env.close()
utils.maybe_close_measurements(train_measurements)
utils.maybe_close_measurements(valid_measurements)
utils.maybe_close_measurements(test_measurements)
def main(_):
utils.dump_flags_to_file(os.path.join(FLAGS.workdir, 'flags.txt'))
tf.logging.set_verbosity(tf.logging.INFO)
gin.parse_config_files_and_bindings(FLAGS.gin_files,
FLAGS.gin_bindings)
train(FLAGS.workdir, env_name=FLAGS.env_name,
num_timesteps=FLAGS.num_timesteps)
if __name__ == '__main__':
tf.app.run()