-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathdata.py
36 lines (30 loc) · 1.38 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
# Copyright 2021 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Reading data."""
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
import tensorflow_datasets as tfds
from utils import EasyDict
DATA_DIR = os.path.join(os.environ['ML_DATA'], 'TFDS')
def get_data(data_name: str):
assert data_name in ['mnist', 'emnist_merge', 'cifar10']
if data_name.startswith('emnist'):
data_name = 'emnist/by' + data_name[7:]
data, info = tfds.load(name=data_name, batch_size=-1, data_dir=DATA_DIR, with_info=True)
data = tfds.as_numpy(data)
train = EasyDict(image=data['train']['image'].transpose(0, 3, 1, 2) / 127.5 - 1, label=data['train']['label'])
test = EasyDict(image=data['test']['image'].transpose(0, 3, 1, 2) / 127.5 - 1, label=data['test']['label'])
ntrain = train['image'].shape[0]
nclass = info.features['label'].num_classes
return train, test, ntrain, nclass