-
Notifications
You must be signed in to change notification settings - Fork 127
/
tapir_config.py
132 lines (121 loc) · 4.96 KB
/
tapir_config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
# Copyright 2024 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Default config to train the TAPIR."""
from jaxline import base_config
from ml_collections import config_dict
# We define the experiment launch config in the same file as the experiment to
# keep things self-contained in a single file.
def get_config() -> config_dict.ConfigDict:
"""Return config object for training."""
config = base_config.get_base_config()
# Experiment config.
config.training_steps = 100000
# NOTE: duplicates not allowed.
config.shared_module_names = ('tapir_model',)
config.dataset_names = ('kubric',)
# Note: eval modes must always start with 'eval_'.
config.eval_modes = (
'eval_davis_points',
'eval_jhmdb',
'eval_robotics_points',
'eval_kinetics_points',
)
config.checkpoint_dir = '/tmp/tapnet_training/'
config.evaluate_every = 10000
config.experiment_kwargs = config_dict.ConfigDict(
dict(
config=dict(
sweep_name='default_sweep',
save_final_checkpoint_as_npy=True,
# `enable_double_transpose` should always be false when using 1D.
# For other D It is also completely untested and very unlikely
# to work.
optimizer=dict(
base_lr=1e-3,
max_norm=-1, # < 0 to turn off.
weight_decay=1e-1,
schedule_type='cosine',
cosine_decay_kwargs=dict(
init_value=0.0,
warmup_steps=1000,
end_value=0.0,
),
optimizer='adam',
# Optimizer-specific kwargs.
adam_kwargs=dict(
b1=0.9,
b2=0.95,
eps=1e-8,
),
),
fast_variables=tuple(),
shared_modules=dict(
shared_module_names=config.get_oneway_ref(
'shared_module_names',
),
tapir_model_kwargs=dict(
bilinear_interp_with_depthwise_conv=False,
pyramid_level=0,
use_causal_conv=False,
initial_resolution=(256, 256),
),
),
datasets=dict(
dataset_names=config.get_oneway_ref('dataset_names'),
kubric_kwargs=dict(
batch_dims=8,
shuffle_buffer_size=128,
train_size=(256, 256),
),
),
supervised_point_prediction_kwargs=dict(
prediction_algo='cost_volume_regressor',
model_key='tapir_model',
),
checkpoint_dir=config.get_oneway_ref('checkpoint_dir'),
evaluate_every=config.get_oneway_ref('evaluate_every'),
eval_modes=config.get_oneway_ref('eval_modes'),
# If true, run evaluate() on the experiment once before
# you load a checkpoint.
# This is useful for getting initial values of metrics
# at random weights, or when debugging locally if you
# do not have any train job running.
davis_points_path='',
jhmdb_path='',
robotics_points_path='',
training=dict(
# Note: to sweep n_training_steps, DO NOT sweep these
# fields directly. Instead sweep config.training_steps.
# Otherwise, decay/stopping logic
# is not guaranteed to be consistent.
n_training_steps=config.get_oneway_ref('training_steps'),
),
inference=dict(
input_video_path='',
output_video_path='',
resize_height=256, # video height resized to before inference
resize_width=256, # video width resized to before inference
num_points=20, # number of random points to sample
),
)
)
)
# Set up where to store the resulting model.
config.train_checkpoint_all_hosts = False
config.save_checkpoint_interval = 10
config.eval_initial_weights = True
# Prevents accidentally setting keys that aren't recognized (e.g. in tests).
config.lock()
return config