-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathtest_celeb_a_hq.py
45 lines (39 loc) · 1.66 KB
/
test_celeb_a_hq.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
# Copyright 2022 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Quick script to test that celeb_a_hq experiment can import and run."""
from absl import app
import jax
import jax.numpy as jnp
from functa import experiment_meta_learning as exp
def main(_):
"""Tests the meta learning experiment on celeba."""
config = exp.get_config()
exp_config = config.experiment_kwargs.config
exp_config.dataset.name = 'celeb_a_hq_custom'
exp_config.training.per_device_batch_size = 2
exp_config.evaluation.batch_size = 2
exp_config.model.width = 16
exp_config.model.depth = 2
exp_config.model.latent_dim = 16
print(exp_config)
xp = exp.Experiment('train', jax.random.PRNGKey(0), exp_config)
bcast = jax.pmap(lambda x: x)
global_step = bcast(jnp.zeros(jax.local_device_count()))
rng = bcast(jnp.stack([jax.random.PRNGKey(0)] * jax.local_device_count()))
print('Taking a single experiment step for test purposes.')
result = xp.step(global_step, rng)
print(f'Step successfully taken, resulting metrics are {result}')
if __name__ == '__main__':
app.run(main)